
51

Control 1: Decisions
This unit focuses on controlling the fl ow of a program with conditional structures.
Logical operators for extending relational expressions are introduced.

Syntax introduced:
> (greater than), < (less than)

>= (greater than or equal to), <= (less than or equal to)

== (equality), != (inequality)

if, else, {} (braces)

|| (logical OR), && (logical AND), ! (logical NOT)

The programs we’ve seen so far run each line of code in sequence. They run the fi rst line,
then the second, then the third, etc. The program stops when the last line is run. It’s often
benefi cial to change this order—sometimes skipping lines or repeating lines many times
to perform a repetitive action. Although the lines of code that comprise a program are
always positioned in an order from top to bottom on the page, this doesn’t necessarily
defi ne the order in which each line is run. This order is called the fl ow of the program.
Flow can be changed by adding elements of code called control structures.

Relational expressions

What is truth? It’s easy to answer this diffi cult philosophical question in the context
of programming because the logical notions of true and false are well defi ned. Code
elements called relational expressions evaluate to true and false. A relational
expression is made up of two values that are compared with a relational operator.
In Processing, two values can be compared with relational operators as follows:

 Expression Evaluation

 3 > 5 false

 3 < 5 true

 5 < 3 false

 5 > 3 true

Each of these statements can be converted to English. Using the fi rst row as an example,
we can say, “Is three greater than fi ve?” The answer “no” is expressed with the value
false. The next row can be converted to “Is three less than fi ve?” The answer is “yes”
and is expressed with the value true. A relational expression, two values compared with
a relational operator, evaluates to true or false—there are no other possible values.
The relational operators are defi ned as follows:

Reas_01_001-084.indd Sec2:51Reas_01_001-084.indd Sec2:51 5/23/07 1:20:43 PM5/23/07 1:20:43 PM

52 Control 1: Decisions

 Operator Meaning

 > greater than

 < less than

 >= greater than or equal to

 <= less than or equal to

 == equivalent to

 != not equivalent to

The following lines of code show the results of comparing the same group of numbers
with different relational operators:

println(3 > 5); // Prints "false"

println(5 > 3); // Prints "true"

println(5 > 5); // Prints "false"

println(3 < 5); // Prints "true"

println(5 < 3); // Prints "false"

println(5 < 5); // Prints "false"

println(3 >= 5); // Prints "false"

println(5 >= 3); // Prints "true"

println(5 >= 5); // Prints "true"

println(3 <= 5); // Prints "true"

println(5 <= 3); // Prints "false"

println(5 <= 5); // Prints "true"

The equality operator, the == symbol, determines whether two values are equivalent.
It is different from the = symbol, which assigns a value, but the two are often used
erroneously in place of each other. The only way to avoid this mistake is to be careful.
It’s similar to using “their” instead of “there” when writing in English—a mistake that
even experienced writers sometimes make. The != symbol is the opposite of == and
determines whether two values are not equivalent.

println(3 == 5); // Prints "false"

println(5 == 3); // Prints "false"

println(5 == 5); // Prints "true"

println(3 != 5); // Prints "true"

println(5 != 3); // Prints "true"

println(5 != 5); // Prints "false"

5-01

5-02

Reas_01_001-084.indd Sec2:52Reas_01_001-084.indd Sec2:52 5/23/07 1:20:44 PM5/23/07 1:20:44 PM

53 Control 1: Decisions

Conditionals

Conditionals allow a program to make decisions about which lines of code run and
which do not. They let actions take place only when a specifi c condition is met.
Conditionals allow a program to behave differently depending on the values of their
variables. For example, the program may draw a line or an ellipse depending on the
value of a variable. The if structure is used in Processing to make these decisions:

 if (test) {

 statements

 }

The test must be an expression that resolves to true or false. When the test expression
evaluates to true, the code inside the { (left brace) and } (right brace) is run. If the
expression is false, the code is ignored. Code inside a set of braces is called a block.
 The following three examples present the same code with different values for the x
variable. Because this variable is used in the test for the if structure, changing it affects
which lines of code are run. Changing the value causes an ellipse, rectangle, or neither to
draw to the display window.

 // The text expressions are "x > 100" and "x < 100"

 // Because x is 150, the code inside the first block

 // runs and the ellipse draws, but the code in the second

 // block is not run and the rectangle is not drawn

 int x = 150;

 if (x > 100) { // If x is greater than 100,

 ellipse(50, 50, 36, 36); // draw this ellipse

 }

 if (x < 100) { // If x is less than 100

 rect(35, 35, 30, 30); // draw this rectangle

 }

 line(20, 20, 80, 80);

 // Because x is 50, only the rectangle draws

 int x = 50;

 if (x > 100) { // If x is greater than 100,

 ellipse(50, 50, 36, 36); // draw this ellipse

 }

 if (x < 100) { // If x is less than 100,

 rect(33, 33, 34, 34); // draw this rectangle

 }

 line(20, 20, 80, 80);

5-03

5-04

Reas_01_001-084.indd Sec2:53Reas_01_001-084.indd Sec2:53 5/23/07 1:20:44 PM5/23/07 1:20:44 PM

54 Control 1: Decisions

Decisions
The fl ow of an if, else, and else if structure shown as a diagram. The code inside each block is run if the test
evaluates to true. For each set of diagrams, the general case shows the generic format and the specifi c case shows one
example of how the format can be used within a program.

if (x < 150) {
 line(20, 20, 180, 180);
}

if (test) {
 statements
}

if
truetrue

falsefalsex<150

line(20, 20, 180, 180);

if
truetrue

falsefalse
test

statements

if (x < 150) {
 line(20, 20, 180, 180);
} else {
 ellipse(50, 50, 30, 30);
}

if

elsetruetrue

x<150

line(20, 20, 180, 180); ellipse(50, 50, 30, 30);

falsefalse

if (test) {
 statements 1
} else {
 statements 2
}

if

elsetruetrue

test

statements 1 statements 2

falsefalse

if (test 1) {
 statements 1
} else if (test 2) {
 statements 2
}

if
truetrue

test 1

statements 1

falsefalse

else if
truetrue

test 2 falsefalse

statements 2

if (x < 150) {
 line(20, 20, 180, 180);
} else if (x > 150) {
 ellipse(50, 50, 30, 30);
}

if
truetrue

x<150

line(20, 20, 180, 180);

falsefalse

else if
truetrue

x>150 falsefalse

ellipse(50, 50, 30, 30);

General case if structure

A specific if structure

A specific if/else structure

General case if/else structure

General case if/else if structure

A specific if/else if structure

Reas_01_001-084.indd Sec2:54Reas_01_001-084.indd Sec2:54 5/23/07 1:20:44 PM5/23/07 1:20:44 PM

55 Control 1: Decisions

 // Because x is 100, only the line draws

 int x = 100;

 if (x > 100) { // If x is greater than 100,

 ellipse(50, 50, 36, 36); // draw this ellipse

 }

 if (x < 100) { // If x is less than 100,

 rect(33, 33, 34, 34); // draw this rectangle

 }

 line(20, 20, 80, 80); // Always draw the line

To run a different set of code when the relational expression for an if structure is not
true, use the else keyword. The keyword else extends an if structure so that when
the expression associated with the structure is false, the code in the else block is
run instead.

 // Because x is 90, only the rectangle draws

 int x = 90;

 if (x > 100) { // If x is greater than 100,

 ellipse(50, 50, 36, 36); // draw this ellipse

 } else { // Otherwise,

 rect(33, 33, 34, 34); // draw this rectangle

 }

 line(20, 20, 80, 80); // Always draw the line

 // Because x is 290, only the ellipse draws

 int x = 290;

 if (x > 100) { // If x is greater than 100,

 ellipse(50, 50, 36, 36); // draw this ellipse

 } else { // Otherwise,

 rect(33, 33, 34, 34); // draw this rectangle

 }

 line(20, 20, 80, 80); // Always draw the line

5-05

5-06

5-07

Reas_01_001-084.indd Sec2:55Reas_01_001-084.indd Sec2:55 5/23/07 1:20:45 PM5/23/07 1:20:45 PM

56 Control 1: Decisions

Conditionals can be embedded within other conditionals to control which lines of code
will run. In the next example, the code for drawing the ellipse or line can be reached only
if x is larger than 100. If this expression evaluates to true, a second comparison of
x determines which of these shapes will be drawn.

 // If x is greater than 100 and less than 300, draw the

 // ellipse. If x is greater than or equal to 300, draw

 // the line. If x is not greater than 100, draw the

 // rectangle. Because x is 420, only the line draws.

 int x = 420;

 if (x > 100) { // First test to draw ellipse or line

 if (x < 300) { // Second test determines which to draw

 ellipse(50, 50, 36, 36);

 } else {

 line(50, 0, 50, 100);

 }

 } else {

 rect(33, 33, 34, 34);

 }

Conditionals can be extended further by combining an else with an if. This allows
conditionals to use multiple tests to determine which lines the program should run. This
technique is used when there are many choices and only one can be selected at a time.

 // If x is less than or equal to 100, then draw

 // the rectangle. Otherwise, if x is greater than

 // or equal to 300, draw the line. If x is between

 // 100 and 300, draw the ellipse. Because x is 101,

 // only the ellipse draws.

 int x = 101;

 if (x <= 100) {

 rect(33, 33, 34, 34);

 } else if (x >= 300) {

 line(50, 0, 50, 100);

 } else {

 ellipse(50, 50, 36, 36);

 }

5-08

5-09

Reas_01_001-084.indd Sec2:56Reas_01_001-084.indd Sec2:56 5/23/07 1:20:45 PM5/23/07 1:20:45 PM

57 Control 1: Decisions

Logical operators

Logical operators are used to combine two or more relational expressions and to invert
logical values. They allow for more than one condition to be considered simultaneously.
The logical operators are symbols for the logical concepts of AND, OR, and NOT:

 Operator Meaning

 && AND

 || OR

 ! NOT

The following table outlines all possible combinations and the results.

 Expression Evaluation

 true && true true

 true && false false

 false && false false

 true || true true

 true || false true

 false || false false

 !true false

 !false true

The logical OR operator, two vertical bars (sometimes called pipes), makes the relational
expression true if only one part is true. The following example shows how to use it:

 int a = 10;

 int b = 20;

 // The expression "a > 5" must be true OR "b < 30"

 // must be true. Because they are both true, the code

 // in the block will run.

 if ((a > 5) || (b < 30)) {

 line(20, 50, 80, 50);

 }

 // The expression "a > 15" is false, but "b < 30"

 // is true. Because the OR operator requires only one part

 // to be true in the entire expression, the code in the

 // block will run.

 if ((a > 15) || (b < 30)) {

 ellipse(50, 50, 36, 36);

 }

Compound logical expressions can be tricky to fi gure out, but they are simpler when
looked at step by step. Parentheses are useful hints in determining the order of

5-10

Reas_01_001-084.indd Sec2:57Reas_01_001-084.indd Sec2:57 5/23/07 1:20:46 PM5/23/07 1:20:46 PM

58 Control 1: Decisions

evaluation. Looking at the test of the if structure in line 6 of the previous example, fi rst
the variables are replaced with their values, then each subexpression is evaluated, and
fi nally the expression with the logical operator is evaluated:

 Step 1 (a > 5) || (b < 30)

 Step 2 (10 > 5) || (20 < 30)

 Step 3 true || true

 Step 4 true

The logical AND operator, two ampersands, allows the entire relational statement to be
true only if both parts are true. The following example is the same as the last except
the logical OR operators have been changed to the logical AND. Because each operator
compares the values differently, only the line is drawn here, whereas the previous
example drew both the line and circle.

 int a = 10;

 int b = 20;

 // The expression "a > 5" must be true AND "b < 30"

 // must be true. Because they are both true, the code

 // in the block will run.

 if ((a > 5) && (b < 30)) {

 line(20, 50, 80, 50);

 }

 // The expression "a > 15" is false, but "b < 30" is

 // true. Because the AND operator requires both to be

 // true, the code in the block will not run.

 if ((a > 15) && (b < 30)) {

 ellipse(50, 50, 36, 36);

 }

Technically, the steps shown above aren’t the whole story. When using AND, the fi rst
part of the expression will be evaluated. If that part is false, then the second part of the
expression won’t even be evaluated. For example, in this expression . . .

 (a > 5) && (b < 30)

. . . if a > 5 evaluates to false, then b < 30 is ignored for effi ciency. This is called a short
circuit operator. The same happens for the OR operator, where the fi rst true statement
will end evaluation. For example, if the expression is:

 (a > 5) || (b < 30)

If a > 5 is true, then the b < 30 will be ignored, because the entire expression will
evaluate to true, regardless of the value of b < 30. Outside of effi ciency, this has many

5-11

Reas_01_001-084.indd Sec2:58Reas_01_001-084.indd Sec2:58 5/23/07 1:20:46 PM5/23/07 1:20:46 PM

59 Control 1: Decisions

practical applications in more advanced code.
 The logical NOT operator is an exclamation mark. It inverts the logical value of the
associated boolean variables. It changes true to false, and false to true. The logical
NOT operator can be applied only to boolean variables.

boolean b = true; // Assign true to b

println(b); // Prints "true"

println(!b); // Prints "false"

b = !b; // Assign false to b

println(b); // Prints "false"

println(!b); // Prints "true"

println(5 > 3); // Prints "true"

println(!(5 > 3)); // Prints "false"

int x = 5;

println(!x); // ERROR! It's only possible to ! a boolean variable

 // Because b is true, the line draws

 boolean b = true;

 if (b == true) { // If b is true,

 line(20, 50, 80, 50); // draw the line

 }

 if (!b == true) { // If b is false,

 ellipse(50, 50, 36, 36); // draw the ellipse

 }

 Exercises
1. Create a few relational expressions and print their evaluation to the console
 with println().
2. Create a composition with a series of lines and ellipses. Use an if structure to select
 which lines of code to run and which to skip.
3. Add an else to the code from exercise 2 to change which code is run.

5-12

5-13

Reas_01_001-084.indd Sec2:59Reas_01_001-084.indd Sec2:59 5/23/07 1:20:46 PM5/23/07 1:20:46 PM

