
Loops 81

 6 Loops
 “ Repetition is the reality and the seriousness of life. ”
 —Soren Kierkegaard

 “ What’s the key to comedy? Repetition. What’s the key to comedy? Repetition. ”
 —Anonymous

 In this chapter:
 – The concept of iteration.
 – Two types of loops: “ while, ” and “ for. ” When do we use them?
 – Iteration in the context of computer graphics.

 6.1 What is iteration? I mean, what is iteration? Seriously, what is iteration?
 Iteration is the generative process of repeating a set of rules or steps over and over again. It is a
fundamental concept in computer programming and we will soon come to discover that it makes our lives
as coders quite delightful. Let’s begin.

 For the moment, think about legs. Lots and lots of legs on our little Zoog. If we had only read Chapter 1
of this book, we would probably write some code as in Example 6-1 .

 Example 6-1: Many lines

 size(200,200);
 background(255);

 // Legs
 stroke(0);
 line(50,60,50,80);
 line(60,60,60,80);
 line(70,60,70,80);
 line(80,60,80,80);
 line(90,60,90,80);
 line(100,60,100,80);
 line(110,60,110,80);
 line(120,60,120,80);
 line(130,60,130,80);
 line(140,60,140,80);
 line(150,60,150,80);

 In the above example, legs are drawn from x = 50 pixels all the way to x � 150 pixels, with one leg every
10 pixels. Sure, the code accomplishes this, however, having learned variables in Chapter 4, we can make
some substantial improvements and eliminate the hard-coded values.

 First, we set up variables for each parameter of our system: the legs ’ x , y locations, length, and the spacing
between the legs. Note that for each leg drawn, only the x value changes. All other variables stay the same
(but they could change if we wanted them to!).

 fi g. 6.1

82 Learning processing

 Example 6-2: Many lines with variables

 size(200,200);
 background(0);

 // Legs
 stroke(255);

 int y = 80; // Vertical location of each line
 int x = 50; // Initial horizontal location for first line
 int spacing = 10; // How far apart is each line
 int len = 20; // Length of each line

 line(x,y,x,y + len);

 x = x + spacing;
 line(x,y,x,y + len);

 x = x + spacing;
 line(x,y,x,y + len);

 x = x + spacing;
 line(x,y,x,y + len);

 x = x + spacing;
 line(x,y,x,y + len);

 x = x + spacing;
 line(x,y,x,y + len);

 x = x + spacing;
 line(x,y,x,y + len);

 x = x + spacing;
 line(x,y,x,y + len);

 x = x + spacing;
 line(x,y,x,y + len);

 x = x + spacing;
 line(x,y,x,y + len);

 x = x + spacing;
 line(x,y,x,y + len);

 Not too bad, I suppose. Strangely enough, although this is technically more effi cient (we could adjust the
spacing variable, for example, by changing only one line of code), we have taken a step backward, having
produced twice as much code! And what if we wanted to draw 100 legs? For every leg, we need two lines
of code. Th at’s 200 lines of code for 100 legs! To avoid this dire, carpal-tunnel inducing problem, we want
to be able to say something like:

Draw one line one hundred times.

 Aha, only one line of code!

 Obviously, we are not the fi rst programmers to reach this dilemma and it is easily solved with the
very commonly used control structure —the loop . A loop structure is similar in syntax to a conditional

Draw the fi rst leg.

Add spacing so the next leg
appears 10 pixels to the right.

Continue this process for
each leg, repeating it over
and over.

Loops 83

(see Chapter 5). However, instead of asking a yes or no question to determine whether a block of code
should be executed one time, our code will ask a yes or no question to determine how many times the
block of code should be repeated . Th is is known as iteration.

 6.2 “ WHILE ” Loop, the Only Loop You Really Need
 Th ere are three types of loops, the while loop, the do-while loop, and the for loop. To get started, we are
going to focus on the while loop for a little while (sorry, couldn’t resist). For one thing, the only loop you
really need is while . Th e for loop, as we will see, is simply a convenient alternative, a great shorthand for
simple counting operations. Do-while , however, is rarely used (not one example in this book requires it)
and so we will ignore it.

 Just as with conditional (if / else) structures, a while loop employs a boolean test condition. If the test
evaluates to true, the instructions enclosed in curly brackets are executed; if it is false, we continue on to
the next line of code. Th e diff erence here is that the instructions inside the while block continue to be
executed over and over again until the test condition becomes false. See Figure 6.2 .

 Let’s take the code from the legs problem. Assuming the following variables . . .

 int y = 80; // Vertical location of each line
 int x = 50; // Initial horizontal location for first line
 int spacing = 10; // How far apart is each line
 int len = 20; // Length of each line

 … we had to manually repeat the following code:

 stroke(255);
 line(x,y,x,y + len); // Draw the first leg

 x = x + spacing; // Add "spacing " to x
 line(x,y,x,y + len); // The next leg is 10 pixels to the right

 x = x + spacing; // Add "spacing" to x
 line(x,y,x,y + len); // The next leg is 10 pixels to the right

 x = x + spacing; // Add ''spacing” to x
 line(x,y,x,y + len); // The next leg is 10 pixels to the right

 // etc. etc. repeating with new legs

WHILE (BOOLEAN TEST)

A. DO THIS
B. DO THIS

IS FALSEIS TRUE

REPEAT

 fi g. 6.2

84 Learning processing

 Now, with the knowledge of the existence of while loops, we can rewrite the code as in Example 6-3,
adding a variable that tells us when to stop looping, that is, at what pixel the legs stop.

 Example 6-3: While loop

 int endLegs = 150;

 stroke(0);
 while (x < = endLegs) {
 line (x,y,x,y + len);
 x = x + spacing;
 }

 Instead of writing “ line(x,y,x,y + len); ” many times as we did at fi rst, we now write it only once inside of the
while loop , saying “ as long as x is less than 150, draw a line at x , all the while incrementing x . ” And so
what took 21 lines of code before, now only takes four!

 In addition, we can change the spacing variable to generate more legs. Th e results are shown in Figure 6.4 .

 int spacing = 4;

 while (x < = endLegs) {
 line (x,y,x,y + len); // Draw EACH leg
 x = x + spacing;
 }

 Let’s look at one more example, this time using rectangles instead of
lines, as shown in Figure 6.5 , and ask three key questions.

1. What is the initial condition for your loop? Here, since the fi rst rectangle is at y location 10, we want
to start our loop with y � 10.

 int y = 10;

2. When should your loop stop? Since we want to display rectangles all the way to the bottom of the
window, the loop should stop when y is greater than height. In other words, we want the loop to keep
going as long as y is less than height.

 fi g. 6.3

 fi g. 6.4

 fi g. 6.5

Draw each leg inside
a while loop.

A variable to mark
where the legs end.

A smaller spacing
value results in legs
closer together.

Loops 85

 while (y < 100) {
 // Loop!
 }

3. What is your loop operation? In this case, each time through the loop, we want to draw a new
rectangle below the previous one. We can accomplish this by calling the rect() function and
incrementing y by 20.

 rect(100,y,100,10);
 y = y + 20;

 Putting it all together:

 int y = 10;

 while (y < height) {
 rect(100,y,100,10);

 y = y + 20;
 }

Initial condition.

The loop continues while the boolean expression is true.
Therefore, the loop stops when the boolean expression is false.

We increment y each time through the loop, drawing rectangle
after rectangle until y is no longer less than height.

 size(200,200);

 background(255);

 int y = 0;

 while (________) {

 stroke(0);

 line(_______,_______,_______,_______);

 y = ________ ;

 }

 size(200,200);

background(255);

 float w = ________ ;

 while (________) {

 stroke(0);

 fill(________);

 ellipse(_______,_______,_______,_______);

 __________20;

}

 Exercise 6-1: Fill in the blanks in the code to recreate the following screenshots.

86 Learning processing

 Examining the “ legs ” in Example 6-3, we can see that as soon as x is greater than 150, the loop stops.
And this always happens because x increments by “ spacing ” , which is always a positive number. Th is is not
an accident; whenever we embark on programming with a loop structure, we must make sure that the exit
condition for the loop will eventually be met!

Processing will not give you an error should your exit condition never occur. Th e result is Sisyphean, as
your loop rolls the boulder up the hill over and over and over again to infi nity.

 Example 6-4: Infi nite loop. Don’t do this!

 int x = 0;
 while (x < 10) {
 println(x);
 x = x – 1;
 }

 For kicks, try running the above code (make sure you have saved all your work and are not running some
other mission-critical software on your computer). You will quickly see that Processing hangs. Th e only
way out of this predicament is probably to force-quit Processing . Infi nite loops are not often as obvious as
in Example 6-4. Here is another fl awed program that will sometimes result in an infi nite loop crash.

 Example 6-5: Another infi nite loop. Don’t do this!

 int y = 80; // Vertical location of each line
 int x = 0; // Horizontal location of first line
 int spacing = 10; // How far apart is each line
 int len = 20; // Length of each line
 int endLegs = 150; // Where should the lines stop?

 void setup() {
 size(200,200);
 }

 void draw() {
 background(0);
 stroke(255);

 x = 0;
 spacing = mouseX / 2;

 6.3 “ Exit ” Conditions
 Loops, as you are probably starting to realize, are quite handy. Nevertheless, there is a dark, seedy
underbelly in the world of loops, where nasty things known as infi nite loops live. See Figure 6.6 .

WHILE (ALWAYS TRUE)

BAD!!

DO THIS FOREVER AND EVER...
 fi g. 6.6

The spacing variable, which sets the distance
in between each line, is assigned a value
equal to mouseX divided by two.

Decrementing x results in an infi nite loop here because
the value of x will never be 10 or greater. Be careful!

Loops 87

 while (x < = endLegs) {
 line(x,y,x,y + len);

 x = x + spacing;
 }
 }

 Will an infi nite loop occur? We know we will be stuck looping forever if x never is greater than 150. And
since x increments by spacing, if spacing is zero (or a negative number) x will always remain the same
value (or go down in value.)

 Recalling the constrain() function described in Chapter 4, we can guarantee no infi nite loop by
constraining the value of spacing to a positive range of numbers:

 int spacing = constrain(mouseX/2, 1, 100);

 Since spacing is directly linked with the necessary exit condition, we enforce a specifi c range of values to
make sure no infi nite loop is ever reached. In other words, in pseudocode we are saying: “ Draw a series of
lines spaced out by N pixels where N can never be less than 1! ”

 Th is is also a useful example because it reveals an interesting fact about mouseX . You might be tempted to
try putting mouseX directly in the incrementation expression as follows:

 while (x < = endLegs) {
 line(x,y,x,y + len);
 x = x + mouseX /2;
 }

 Wouldn’t this solve the problem, since even if the loop gets stuck as soon as the user moves the mouse
to a horizontal location greater than zero, the exit condition would be met? It is a nice thought, but one
that is sadly quite fl awed. mouseX and mouseY are updated with new values at the beginning of each
cycle through draw() . So even if the user moves the mouse to X location 50 from location 0, mouseX will
never know this new value because it will be stuck in its infi nite loop and not able to get to the next cycle
through draw() .

 6.4 “ FOR ” Loop
 A certain style of while loop where one value is incremented repeatedly (demonstrated in Section 6.2)
is particularly common. Th is will become even more evident once we look at arrays in Chapter 9. Th e
for loop is a nifty shortcut for commonly occurring while loops. Before we get into the details, let’s talk
through some common loops you might write in Processing and how they are written as a for loop.

 Start at 0 and count up to 9. for (int i = 0; i < 10; i = i + 1)

 Start at 0 and count up to 100 by 10. for (int i = 0; i < 101; i = i + 10)

 Start at 100 and count down to 0 by 5. for (int i = 100; i > = 0; i = i – 5)

Exit Condition — when x is greater than endlegs.

Incrementation of x. x always increases by
the value of spacing. What is the range of
possible value for spacing?

Using constrain() to ensure
the exit condition is met.

Placing mouseX inside the loop is not
a solution to the infi nite loop problem.

88 Learning processing

 Looking at the above examples, we can see that a for loop consists of three parts:

 • Initialization —Here, a variable is declared and initialized for use within the body of the loop. This
variable is most often used inside the loop as a counter.

 • Boolean Test —This is exactly the same as the boolean tests found in conditional statements and
while loops. It can be any expression that evaluates to true or false.

 • Iteration Expression —The last element is an instruction that you want to happen with each loop
cycle. Note that the instruction is executed at the end of each cycle through the loop. (You can have
multiple iteration expressions, as well as variable initializations, but for the sake of simplicity we will
not worry about this now.)

START
WITH THIS

RUN THE CODE

DO THIS

RETURN TO #2

for (int i = 0; i < 10; i++) {

 #4 & #5 ARE “INVISIBLE”

}

TEST THIS
IF FALSE EXIT1

3

4

5

2

 fi g. 6.7

 Increment/Decrement Operators

 Th e shortcut for adding or subtracting one from a variable is as follows:

 x ++; is equivalent to: x � x � 1; meaning: “ increment x by 1 ” or
 “ add 1 to the current value of x ”

 x � � ; is equivalent to: x � x � 1;

 We also have:
 x � � 2; same as x � x � 2;
 x * � 3; same as x � x * 3;
 and so on.

 In English, the above code means: repeat this code 10 times. Or to put it even more simply: count from
zero to nine!

 To the machine, it means the following:

 • Declare a variable i,
and set its initial value to 0.

 • While i is less than 10, repeat this code.
 • At the end of each iteration, add one to i .

A for loop can have its own variable just for the
purpose of counting. A variable not declared at
the top of the code is called a local variable.
We will explain and defi ne it shortly.

Loops 89

 Th e same exact loop can be programmed with the while format:

 int i = 0;
 while (i < 10) {
 i + + ;
 //lines of code to execute here
 }

 Rewriting the leg drawing code to use a for statement looks like this:

 Example 6-6: Legs with a for loop

 int y = 80; // Vertical location of each line
 int spacing = 10; // How far apart is each line
 int len = 20; // Length of each line

 for (int x = 50; x < = 150; x + = spacing) {
 line(x,y,x,y + len);
 }

Translation of the legs while
loop to a for loop.

 Exercise 6-2: Rewrite Exercise 6-1 using a for loop.

 size(200,200);

 background(255);

 for (int y =________;________;________) {

 stroke(0);

 line(________,________,________,________);

 }

 size(200,200);

 background(255);

 for (________;________;________– � 20) {

 stroke(0);

 fill(________);

 ellipse(________,________,________,

________);

 ellipse(________,________,________,

________);

 }

This is the translation of the for loop, using a while loop.

