
Objects 121

 8 Objects
 “ No object is so beautiful that, under certain conditions, it will not look ugly. ”
 —Oscar Wilde

 In this chapter:
 – Data and functionality, together at last.
 – What is an object?
– What is a class?
 – Writing your own classes.
 – Creating your own objects .
 – Processing “ tabs. ”

 8.1 I’m down with OOP.
 Before we begin examining the details of how object-oriented programming (OOP) works in Processing ,
let’s embark on a short conceptual discussion of “ objects ” themselves. It is important to understand that
we are not introducing any new programming fundamentals: objects use everything we have already
learned: variables, conditional statements, loops, functions, and so on. What is entirely new, however, is a
way of thinking, a way of structuring and organizing everything we have already learned.

 Imagine you were not programming in Processing , but were instead writing out a program for your day, a
list of instructions, if you will. It might start out something like:

 • Wake up.
 • Drink coffee (or tea).
 • Eat breakfast: cereal, blueberries, and soy milk.
 • Ride the subway.

 What is involved here? Specifi cally, what things are involved? First, although it may not be immediately
apparent from how we wrote the above instructions, the main thing is you , a human being, a person. You
exhibit certain properties. You look a certain way; perhaps you have brown hair, wear glasses, and appear
slightly nerdy. You also have the ability to do stuff , such as wake up (presumably you can also sleep), eat,
or ride the subway. An object is just like you, a thing that has properties and can do stuff .

 So how does this relate to programming? Th e properties of an object are variables; and the stuff an object
can do are functions. Object-oriented programming is the marriage of everything we have learned in
Chapters 1 through 7, data and functionality, all rolled into one thing .

 Let’s map out the data and functions for a very simple human object:

 Human data

 • Height.
 • Weight.
 • Gender .

122 Learning Processing

 8.2 Using an Object
 Before we look at the actual writing of a class itself, let’s briefl y look at how using objects in our main
program (i.e., setup() and draw()) makes the world a better place.

 Returning to the car example from Chapter 7, you may recall that the pseudocode for the sketch looked
something like this:

 Data (Global Variables):

 Car color.
 Car x location.
 Car y location.
 Car x speed.

 • Eye color.
 • Hair color.

 Human functions

 • Sleep .
 • Wake up.
 • Eat .
 • Ride some form of transportation .

 Now, before we get too much further, we need to embark on a brief metaphysical digression. Th e
above structure is not a human being itself; it simply describes the idea, or the concept, behind a
human being. It describes what it is to be human. To be human is to have height, hair, to sleep, to
eat, and so on. Th is is a crucial distinction for programming objects. Th is human being template is
known as a class . A class is diff erent from an object . You are an object. I am an object. Th at guy on the
subway is an object. Albert Einstein is an object. We are all people, real world instances of the idea of a
human being.

 Th ink of a cookie cutter. A cookie cutter makes cookies, but it is not a cookie itself. Th e cookie cutter is
the class , the cookies are the objects .

 Exercise 8-1: Consider a car as an object. What data would a car have? What functions
would it have?

 Car data Car functions

 _________________________________ _________________________________

 _________________________________ _________________________________

 _________________________________ _________________________________

 _________________________________ _________________________________

 _________________________________ _________________________________

Objects 123

Setup:

 Initialize car color.
 Initialize car location to starting point.
 Initialize car speed.

Draw:

 Fill background.
 Display car at location with color.
 Increment car’s location by speed.

 In Chapter 7, we defi ned global variables at the top of the program, initialized them in setup() , and called
functions to move and display the car in draw() .

 Object-oriented programming allows us to take all of the variables and functions out of the main
program and store them inside a car object. A car object will know about its data— color , location , speed .
Th at is part one. Part two of the car object is the stuff it can do, the methods (functions inside an object).
Th e car can move and it can be displayed .

 Using object-oriented design, the pseudocode improves to look something like this:

Data (Global Variables):

 Car object.

Setup:

 Initialize car object.

Draw:

 Fill background.
 Display car object.
 Move car object.

 Notice we removed all of the global variables from the fi rst example. Instead of having separate variables for
car color, car location, and car speed, we now have only one variable, a Car variable! And instead of initializing
those three variables, we initialize one thing, the Car object. Where did those variables go? Th ey still exist, only
now they live inside of the Car object (and will be defi ned in the Car class, which we will get to in a moment).

 Moving beyond pseudocode, the actual body of the sketch might look like:

 Car myCar;

 void setup() {
 myCar = new Car();

 }

 void draw() {
 background(0);

 myCar.move();
 myCar.display();
 }

 We are going to get into the details regarding the previous code in a moment, but before we do so, let’s
take a look at how the Car class itself is written.

An object in Processing.

124 Learning Processing

 8.3 Writing the Cookie Cutter
 Th e simple Car example above demonstrates how the use of object in Processing makes for clean, readable
code. Th e hard work goes into writing the object template, that is the class itself. When you are fi rst
learning about object-oriented programming, it is often a useful exercise to take a program written
without objects and, not changing the functionality at all, rewrite it using objects. We will do exactly this
with the car example from Chapter 7, recreating exactly the same look and behavior in an object-oriented
manner. And at the end of the chapter, we will remake Zoog as an object.

 All classes must include four elements: name , data , constructor , and methods . (Technically, the only actual required
element is the class name, but the point of doing object-oriented programming is to include all of these.)

 Here is how we can take the elements from a simple non-object-oriented sketch (a simplifi ed version of
the solution to Exercise 7-6) and place them into a Car class, from which we will then be able to make
Car objects.

}

color c;
int xpos;
int ypos;
int xspeed;

void display () {
 rectMode(CENTER);
 fill(c);
 rect
(xpos,ypos,20,10);
}

void drive () {
 xpos = xpos + xspeed;
 if (xpos > width) {
 xpos = 0;
 }
}

void draw() {
 background(0);
 display();
 drive();
}

 color c;
 float xpos;
 float ypos;
 float xspeed;

class Car {

Car() {
 c = color(255);
 xpos = width/2;
 ypos = height/2;
 xspeed = 1;
}

 void display() {
 rectMode(CENTER);
 fill(c);
 rect(xpos,ypos,20,10);
 }

void drive() {
 xpos = xpos + xspeed;
 if (xpos > width){
 xpos = 0;
 }
 }

void setup() {

 size(200,200);
 c = color(255);
 xpos = width/2;
 ypos = height/2;
 xspeed = 1;

}

The class name

Data

Constructor

Functionality

// Simple non OOP Car

Objects 125

 • The Class Name—The name is specified by “ class WhateverNameYouChoose ” . We then enclose
all of the code for the class inside curly brackets after the name declaration. Class names are
traditionally capitalized (to distinguish them from variable names, which traditionally are lowercase).

 • Data—The data for a class is a collection of variables. These variables are often referred to as instance
variables since each instance of an object contains this set of variables.

 • A Constructor—The constructor is a special function inside of a class that creates the instance
of the object itself. It is where you give the instructions on how to set up the object. It is just like
 Processing ’s setup() function, only here it is used to create an individual object within the sketch,
whenever a new object is created from this class . It always has the same name as the class and is
called by invoking the new operator: “ Car myCar � new Car(); ” .

 • Functionality—We can add functionality to our object by writing methods. These are done in the
same way as described in Chapter 7, with a return type, name, arguments, and a body of code.

 Th is code for a class exists as its own block and can be placed anywhere outside of setup() and draw() .

 A Class Is a New Block of Code!

 void setup() {

 }

 void draw() {

 }

 class Car {

 }

 Exercise 8-2: Fill in the blanks in the following Human class defi nition. Include a function
called sleep() or make up your own function. Follow the syntax of the Car example. (Th ere are
no right or wrong answers in terms of the actual code itself; it is the structure that is important.)

 ________ ________ {

 color hairColor;

 float height;

 ________() {

 ________________ ________

 }

 ________________________ {

 }

 }

126 Learning Processing

 8.4 Using an Object: The Details
 In Section 8.2, we took a quick peek at how an object can greatly simplify the main parts of a Processing
sketch (setup() and draw()).

 Car myCar;

 void setup() {
 myCar = new Car();

 }

 void draw() {
 background(0);

 myCar.move();
 myCar.display();

 }

 Let’s look at the details behind the above three steps outlining how to use an object in your sketch.

Step 1. Declaring an object variable.

 If you fl ip back to Chapter 4, you may recall that a variable is declared by specifying a type and a name .

 // Variable Declaration
 int var; // type name

 Th e above is an example of a variable that holds onto a primitive , in this case an integer. As we learned
in Chapter 4, primitive data types are singular pieces of information: an integer, a fl oat, a character.
Declaring a variable that holds onto an object is quite similar. Th e diff erence is that here the type is the
class name, something we will make up, in this case “ Car. ” Objects, incidentally, are not primitives and
are considered complex data types. (Th is is because they store multiple pieces of information: data and
functionality. Primitives only store data.)

Step 2. Initializing an object.

 Again, you may recall from Chapter 4 that in order to initialize a variable (i.e., give it a starting value), we
use an assignment operation—variable equals something.

 // Variable Initialization
 var = 10; // var equals 10

 Initializing an object is a bit more complex. Instead of simply assigning it a primitive value, like an integer
or fl oating point number, we have to construct the object. An object is made with the new operator.

 // Object Initialization
 myCar = new Car();

 In the above example, “ myCar ” is the object variable name and “ � ” indicates we are setting it equal
to something, that something being a new instance of a Car object. What we are really doing here is
initializing a Car object. When you initialize a primitive variable, such as an integer, you just set it equal
to a number. But an object may contain multiple pieces of data. Recalling the Car class from the previous
section, we see that this line of code calls the constructor , a special function named Car() that initializes all
of the object’s variables and makes sure the Car object is ready to go.

Step 1. Declare an object.

Step 2. Initialize object.

Step 3. Call methods on the object.

The new operator is used to make a new object.

Objects 127

 One other thing; with the primitive integer “ var, ” if you had forgotten to initialize it (set it equal to 10),
Processing would have assigned it a default value, zero. An object (such as “ myCar ”), however, has no
default value. If you forget to initialize an object, Processing will give it the value null. null means nothing .
Not zero. Not negative one. Utter nothingness. Emptiness. If you encounter an error in the message
window that says “ NullPointerException ” (and this is a pretty common error), that error is most likely
caused by having forgotten to initialize an object. (See the Appendix for more details.)

Step 3. Using an object

 Once we have successfully declared and initialized an object variable, we can use it. Using an object involves
calling functions that are built into that object. A human object can eat, a car can drive, a dog can bark.
Functions that are inside of an object are technically referred to as “ methods ” in Java so we can begin to use this
nomenclature (see Section 7.1). Calling a method inside of an object is accomplished via dot syntax:

 variableName.objectMethod(Method Arguments);

 In the case of the car, none of the available functions has an argument so it looks like:

 myCar.draw();
 myCar.display();

 8.5 Putting It Together with a Tab
 Now that we have learned how to defi ne a class and use an object born from that class, we can take the
code from Sections 8.2 and 8.3 and put them together in one program.

 Example 8-1: A Car class and a Car object

 Car myCar;

 void setup() {
 size(200,200);

 // Initialize Car object
 myCar = new Car();
 }

 void draw() {
 background(0);

 // Operate Car object.
 myCar.move();
 myCar.display();
 }

 Exercise 8-3: Assume the existence of a Human class. You want to write the code to declare a
Human object as well as call the function sleep() on that human object. Write out the code below:

 Declare and initialize the Human object: ________________________________

 Call the sleep() function: ________________________________

Initialize car object in setup() by calling constructor.

Operate the car object in draw() by calling object
methods using the dots syntax.

Declare car object as a globle variable.

Functions are called with the “dot syntax”.

128 Learning Processing

 class Car {

 color c;
 float xpos;
 float ypos;
 float xspeed;

 Car() {
 c = color(255);

 xpos = width/2;
 ypos = height/2;
 xspeed = 1;
 }

 void display() {

 // The car is just a square
 rectMode(CENTER);

 fill(c);
 rect(xpos,ypos,20,10);

 }

 void move() {

 xpos = xpos + xspeed;
 if (xpos > width) {
 xpos = 0;

 }
 }

 }

 You will notice that the code block that contains the Car class is placed below the main body of the
program (under draw()). Th is spot is identical to where we placed user-defi ned functions in Chapter 7.
Technically speaking, the order does not matter, as long as the blocks of code (contained within curly
brackets) remain intact. Th e Car class could go above setup() or it could even go between setup() and
draw() . Th ough any placement is technically correct, when programming, it is nice to place things where
they make the most logical sense to our human brains, the bottom of the code being a good starting
point. Nevertheless, Processing off ers a useful means for separating blocks of code from each other
through the use of tabs.

 In your Processing window, look for the arrow inside a square in the top right-hand corner . If you click
that button, you will see that it off ers the “ New Tab ” option shown in Figure 8.1 .

 Upon selecting “ New Tab, ” you will be prompted to type in a name for the new tab, as shown in Figure 8.2 .

 Although you can pick any name you like, it is probably a good idea to name the tab after the class you
intend to put there. You can then type the main body of code on one tab (entitled “ objectExample ” in
 Figure 8.2) and type the code for your class in another (entitled “ Car ”).

 Toggling between the tabs is simple, just click on the tab name itself, as shown in Figure 8.3 . Also, it
should be noted that when a new tab is created, a new .pde fi le is created inside the sketch folder, as
shown in Figure 8.4 . Th e program has both an objectExample.pde fi le and Car.pde fi le.

Variables.

A constructor.

Function.

Defi ne a class below the rest of the program.

Function.

Objects 129

fi g. 8.1

fi g. 8.3 fi g. 8.2

fi g. 8.4

130 Learning Processing

 Exercise 8-4: Create a sketch with multiple tabs. Try to get the Car example to run without
any errors.

 8.6 Constructor Arguments
 In the previous examples, the car object was initialized using the new operator followed by the constructor
for the class.

 Car myCar = new Car();

 Th is was a useful simplifi cation while we learned the basics of OOP. Nonetheless, there is a rather serious
problem with the above code. What if we wanted to write a program with two car objects?

 // Creating two car objects
 Car myCar1 = new Car();
 Car myCar2 = new Car();

 Th is accomplishes our goal; the code will produce two car objects, one stored in the variable myCar1 and
one in myCar2. However, if you study the Car class, you will notice that these two cars will be identical:
each one will be colored white, start in the middle of the screen, and have a speed of 1. In English, the
above reads:

 Make a new car.

 We want to instead say:

 Make a new red car, at location (0,10) with a speed of 1.

 So that we could also say:

 Make a new blue car, at location (0,100) with a speed of 2.

 We can do this by placing arguments inside of the constructor method.

 Car myCar = new Car(color(255,0,0),0,100,2);

 Th e constructor must be rewritten to incorporate these arguments:

 Car(color tempC, float tempXpos, float tempYpos, float tempXspeed) {
 c = tempC;
 xpos = tempXpos;
 ypos = tempYpos;

 xspeed = tempXspeed;
 }

 In my experience, the use of constructor arguments to initialize object variables can be somewhat
bewildering. Please do not blame yourself. Th e code is strange-looking and can seem awfully redundant:
 “ For every single variable I want to initialize in the constructor, I have to duplicate it with a temporary
argument to that constructor? ”

Objects 131

 Arguments are local variables used inside the body of a function that get fi lled with values when the
function is called. In the examples, they have one purpose only , to initialize the variables inside of an
object. Th ese are the variables that count, the car’s actual car, the car’s actual x location, and so on. Th e
constructor’s arguments are just temporary , and exist solely to pass a value from where the object is made
into the object itself.

 Th is allows us to make a variety of objects using the same constructor. You might also just write the
word temp in your argument names to remind you of what is going on (c vs. tempC). You will also see
programmers use an underscore (c vs. c_) in many examples. You can name these whatever you want, of
course. However, it is advisable to choose a name that makes sense to you, and also to stay consistent.

 We can now take a look at the same program with multiple object instances, each with unique properties.

 Example 8-2: Two Car objects

 Car myCar1;
 Car myCar2;

 void setup() {
 size(200,200);

 myCar1 = new Car(color(255,0,0),0,100,2);
 myCar2 = new Car(color(0,0,255),0,10,1);
 }

 void draw() {
 background(255);

 Nevertheless, this is quite an important skill to learn, and, ultimately, is one of the things that makes
object-oriented programming powerful. But for now, it may feel painful. Let’s briefl y revisit parameter
passing again to understand how it works in this context. See Figure 8.5 .

Frog f;

void setup () {
 f = new Frog (100);
}

class Frog {

 int tongueLength;

 Frog (int tempTongueLength) {

 tongueLength = tempTongueLength;

 }

}

Parameter Passing:
100 goes into
tempTongueLength

Temporary local
variable

tempTongueLength is used to
assign a value to tongueLength.
Therefore tongueLength = 100

Translation: Make a new frog with a tongue length of 100.

Instance variable:
This is the
variable we care
about, the one that
stores the frog’s
tongue length!

fi g. 8.5

Two objects!

Parameters go inside the parentheses
when the object is constructed.

fi g. 8.6

132 Learning Processing

 myCar1.move();
 myCar1.display();
 myCar2.move();
 myCar2.display();
 }

 class Car {

 color c;
 float xpos;
 float ypos;
 float xspeed;

 Car(color tempC, float tempXpos, float tempYpos, float tempXspeed) {
 c = tempC;
 xpos = tempXpos;
 ypos = tempYpos;
 xspeed = tempXspeed;

 }

 void display() {
 stroke(0);
 fill(c);
 rectMode(CENTER);
 rect(xpos,ypos,20,10);

 }

 void move() {
 xpos = xpos + xspeed;
 if (xpos > width) {
 xpos = 0;

 }
 }

 }

Even though there are multiple objects, we
still only need one class. No matter how many
cookies we make, only one cookie cutter is
needed.Isn’t object-oriented programming swell?

The Constructor is defi ned with arguments.

 Exercise 8-5: Rewrite the gravity example from Chapter 5 using objects with a Ball class.
Include two instances of a Ball object. Th e original example is included here for your reference
with a framework to help you get started.

 _______ _______;

 Ball ball2;

 float grav = 0.1;

 void setup() {

 size(200,200);

 ball1 = new _______(50,0,16);

 _________________(100,50,32);

 }

Objects 133

 void draw() {

 background(100);

 ball1.display();

 }

 _______________ {

 float x;

 float speed;

 float w;

 ______(______,______,______) {

 x = ______;

 speed = 0;

 }

 void ___________() {

 }

 }

// Simple gravity

float x = 100; // x

location

float y = 0; // y

location

float speed = 0; // speed

float gravity = 0.1;// gravity

void setup() {

 size(200,200);

}

void draw() {

 background(100);

 // display the square

 fill(255);

 noStroke();

 rectMode(CENTER);

 rect(x,y,10,10);

 // Add speed to y location

 y = y + speed;

 // Add gravity to speed

 speed = speed + gravity;

 // If square reaches the bottom

 // Reverse speed

 if (y > height) {

 speed = speed * -0.95;

 }

}

134 Learning Processing

 8.7 Objects are data types too !
 Th is is our fi rst experience with object-oriented programming, so we want to take it easy. Th e examples
in this chapter all use just one class and make, at most, two or three objects from that class. Nevertheless,
there are no actual limitations. A Processing sketch can include as many classes as you feel like writing.
If you were programming the Space Invaders game, for example, you might create a Spaceship class, an
Enemy class, and a Bullet class, using an object for each entity in your game.

 In addition, although not primitive , classes are data types just like integers and fl oats. And since classes
are made up of data, an object can therefore contain other objects! For example, let’s assume you had just
fi nished programming a Fork and Spoon class. Moving on to a PlaceSetting class, you would likely include
variables for both a Fork object and a Spoon object inside that class itself. Th is is perfectly reasonable and
quite common in object-oriented programming.

 class PlaceSetting {

 Fork fork;
 Spoon spoon;

 PlaceSetting() {
 fork = new Fork();
 spoon = new Spoon();
 }

 }

 Objects, just like any data type, can also be passed in as arguments to a function. In the Space Invaders
game example, if the spaceship shoots the bullet at the enemy, we would probably want to write a
function inside the Enemy class to determine if the Enemy had been hit by the bullet.

 void hit(Bullet b) {
 // Code to determine if
 // the bullet struck the enemy
 }

 In Chapter 7, we showed how when a primitive value (integer, fl oat, etc.) is passed in a function, a copy
is made. With objects, this is not the case, and the result is a bit more intuitive. If changes are made
to an object after it is passed into a function, those changes will aff ect that object used anywhere else
throughout the sketch. Th is is known as pass by reference since instead of a copy, a reference to the actual
object itself is passed into the function.

 As we move forward through this book and our examples become more advanced, we will begin to
see examples that use multiple objects, pass objects into functions, and more. Th e next chapter, in fact,
focuses on how to make lists of objects. And Chapter 10 walks through the development of a project that
includes multiple classes. For now, as we close out the chapter with Zoog, we will stick with just one class.

 8.8 Object-Oriented Zoog
 Invariably, the question comes up: “ When should I use object-oriented programming? ” For me, the
answer is always. Objects allow you to organize the concepts inside of a software application into

A class can include other objects among its variables.

A function can have an object as its argument.

Objects 135

modular, reusable packages. You will see this again and again throughout the course of this book.
However, it is not always convenient or necessary to start out every project using object-orientation,
especially while you are learning. Processing makes it easy to quickly “ sketch ” out visual ideas with non
object-oriented code.

 For any Processing project you want to make, my advice is to take a step-by-step approach. You do not
need to start out writing classes for everything you want to try to do. Sketch out your idea fi rst by
writing code in setup() and draw() . Nail down the logic of what you want to do as well as how you
want it to look. As your project begins to grow, take the time to reorganize your code, perhaps fi rst with
functions, then with objects. It is perfectly acceptable to dedicate a signifi cant chunk of your time to this
reorganization process (often referred to as refactoring) without making any changes to the end result, that
is, what your sketch looks like and does on screen.

 Th is is exactly what we have been doing with cosmonaut Zoog from Chapter 1 until now. We sketched
out Zoog’s look and experimented with some motion behaviors. Now that we have something, we can
take the time to refactor by making Zoog into an object. Th is process will give us a leg up in programming
Zoog’s future life in more complex sketches.

 And so it is time to take the plunge and make a Zoog class. Our little Zoog is almost all grown up. Th e
following example is virtually identical to Example 7-5 (Zoog with functions) with one major diff erence.
All of the variables and all of the functions from Example 7-5 are now incorporated into the Zoog class
with setup() and draw() containing barely any code.

 Example 8-3

 Zoog zoog;

 void setup() {
 size(200,200);

 smooth();
 zoog = new Zoog(100,125,60,60,16);
 }

 void draw() {
 background(255);

 // mouseX position determines speed factor
 float factor = constrain(mouseX/10,0,5);
 zoog.jiggle(factor);
 zoog.display();
 }

 class Zoog {

 // Zoog's variables
 float x,y,w,h,eyeSize;

 // Zoog constructor
 Zoog(float tempX, float tempY, float tempW, float tempH, float tempEyeSize) {
 x = tempX;
 y = tempY;
 w = tempW;

 h = tempH;
 eyeSize = tempEyeSize;

 }

Zoog is an object!

Zoog is given initial properties via the constructor.

Zoog can do stuff with functions!

Everything about Zoog is contained in this one class.
Zoog has properties (location, with , height, eye size)
and Zoog has abilities (jiggle, display).

136 Learning Processing

 // Move Zoog
 void jiggle(float speed) {
 // Change the location of Zoog randomly
 x = x + random(-1,1)*speed;
 y = y + random(-1,1)*speed;

 // Constrain Zoog to window
 x = constrain(x,0,width);
 y = constrain(y,0,height);

 }

 // Display Zoog
 void display() {
 // Set ellipses and rects to CENTER mode
 ellipseMode(CENTER);
 rectMode(CENTER);

 // Draw Zoog's arms with a for loop
 for (float i = y - h/3; i < y + h/2; i + = 10) {
 stroke(0);
 line(x-w/4,i,x + w/4,i);

 }

 // Draw Zoog's body
 stroke(0);
 fill(175);
 rect(x,y,w/6,h);

 // Draw Zoog's head
 stroke(0);
 fill(255);
 ellipse(x,y-h,w,h);

 // Draw Zoog's eyes
 fill(0);
 ellipse(x-w/3,y-h,eyeSize,eyeSize*2);
 ellipse(x + w/3,y – h,eyeSize,eyeSize*2);

 // Draw Zoog's legs
 stroke(0);
 line(x – w/12,y + h/2,x – w/4,y + h/2 + 10);
 line(x + w/12,y + h/2,x + w/4,y + h/2 + 10);

 }
 }

 Exercise 8-6: Rewrite Example 8-3 to include two Zoogs. Can you vary their appearance?
Behavior? Consider adding color as a Zoog variable.

fi g. 8.7

