
301

Data 4: Arrays
This unit introduces arrays of data.

Syntax introduced:
Array, [] (array access), new, Array.length

append(), shorten(), expand(), arraycopy()

The term array refers to a structured grouping or an imposing number—“The dinner
buffet offers an array of choices,” “The city of Los Angeles faces an array of problems.” In
computer programming, an array is a set of data elements stored under the same name.
Arrays can be created to hold any type of data, and each element can be individually
assigned and read. There can be arrays of numbers, characters, sentences, boolean values,
etc. Arrays might store vertex data for complex shapes, recent keystrokes from the
keyboard, or data read from a fi le.
 Five integer variables (1919, 1940, 1975, 1976, 1990) can be stored in one integer array
rather than defi ning fi ve separate variables. For example, let’s call this array “dates” and
store the values in sequence:

Array elements are numbered starting with zero, which may seem confusing at fi rst
but is important for more advanced programming. The fi rst element is at position [0],
the second is at [1], and so on. The position of each element is determined by its offset
from the start of the array. The fi rst element is at position [0] because it has no offset;
the second element is at position [1] because it is offset one place from the beginning.
The last position in the array is calculated by subtracting 1 from the array length. In this
example, the last element is at position [4] because there are fi ve elements in the array.
 Arrays can make the task of programming much easier. While it’s not necessary to
use them, they can be valuable structures for managing data. Let’s begin with a set of
data points we want to add to our program in order to draw a star:

The following example to draw this shape demonstrates some of the benefi ts of
using arrays, like avoiding the cumbersome chore of storing data points in individual

[0] [1] [2] [3] [4]

1919 1940 1975 1976 1990dates

(50,18)

(61,37)

(69,60)

(71,82)(29,82)

(31,60)

(17,43) (83,43)

(39,37)

(50,73)

Reas_05_279-336.indd Sec4:301Reas_05_279-336.indd Sec4:301 5/23/07 3:52:08 PM5/23/07 3:52:08 PM

302 Data 4: Arrays

variables. The star has 10 vertex points, each with 2 values, for a total of 20 data
elements. Inputting this data into a program requires either creating 20 variables or
using an array. The code (below) on the left demonstrates using separate variables. The
code in the middle uses 10 arrays, one for each point of the shape. This use of arrays
improves the situation, but we can do better. The code on the right shows how the data
elements can be logically grouped together in two arrays, one for the x-coordinates and
one for the y-coordinates.

Separate variables One array for each point One array for each axis

int x0 = 50; int[] p0 = { 50, 18 }; int[] x = { 50, 61, 83, 69, 71,

int y0 = 18; int[] p1 = { 61, 37 }; 50, 29, 31, 17, 39 };

int x1 = 61; int[] p2 = { 83, 43 }; int[] y = { 18, 37, 43, 60, 82,

int y1 = 37; int[] p3 = { 69, 60 }; 73, 82, 60, 43, 37 };

int x2 = 83; int[] p4 = { 71, 82 };

int y2 = 43; int[] p5 = { 50, 73 };

int x3 = 69; int[] p6 = { 29, 82 };

int y3 = 60; int[] p7 = { 31, 60 };

int x4 = 71; int[] p8 = { 17, 43 };

int y4 = 82; int[] p9 = { 39, 37 };

int x5 = 50;

int y5 = 73;

int x6 = 29;

int y6 = 82;

int x7 = 31;

int y7 = 60;

int x8 = 17;

int y8 = 43;

int x9 = 39;

int y9 = 37;

This example shows how to use the arrays within a program. The data for each vertex is
accessed in sequence with a for structure. The syntax and usage of arrays is discussed
in more detail in the following pages.

 int[] x = { 50, 61, 83, 69, 71, 50, 29, 31, 17, 39 };

 int[] y = { 18, 37, 43, 60, 82, 73, 82, 60, 43, 37 };

 beginShape();

 // Reads one array element every time through the for()

 for (int i = 0; i < x.length; i++) {

 vertex(x[i], y[i]);

 }

 endShape(CLOSE);

33-01

Reas_05_279-336.indd Sec4:302Reas_05_279-336.indd Sec4:302 5/23/07 3:52:09 PM5/23/07 3:52:09 PM

303 Data 4: Arrays

Using arrays

Arrays are declared similarly to other data types, but they are distinguished with
brackets, [and]. When an array is declared, the type of data it stores must be specifi ed.
After the array is declared, the array must be created with the keyword “new.” This
additional step allocates space in the computer’s memory to store the array’s data. After
the array is created, the values can be assigned. There are different ways to declare,
create, and assign arrays. In the following examples explaining these differences, an
array with fi ve elements is created and fi lled with the values 19, 40, 75, 76, and 90. Note
the different way each method for creating and assigning elements of the array relates
to setup().

int[] data; // Declare

void setup() {

 size(100, 100);

 data = new int[5]; // Create

 data[0] = 19; // Assign

 data[1] = 40;

 data[2] = 75;

 data[3] = 76;

 data[4] = 90;

}

int[] data = new int[5]; // Declare, create

void setup() {

 size(100, 100);

 data[0] = 19; // Assign

 data[1] = 40;

 data[2] = 75;

 data[3] = 76;

 data[4] = 90;

}

int[] data = { 19, 40, 75, 76, 90 }; // Declare, create, assign

void setup() {

 size(100, 100);

}

The previous three examples assume the arrays are used in a sketch with setup() and
draw(). If arrays are not used with these functions, they can be created and assigned in
the simpler ways shown in the following examples.

33-02

33-03

33-04

Reas_05_279-336.indd Sec4:303Reas_05_279-336.indd Sec4:303 5/23/07 3:52:09 PM5/23/07 3:52:09 PM

304 Data 4: Arrays

int[] data; // Declare

data = new int[5]; // Create

data[0] = 19; // Assign

data[1] = 40;

data[2] = 75;

data[3] = 76;

data[4] = 90;

int[] data = new int[5]; // Declare, create

data[0] = 19; // Assign

data[1] = 40;

data[2] = 75;

data[3] = 76;

data[4] = 90;

int[] data = { 19, 40, 75, 76, 90 }; // Declare, create, assign

The declare, create, and assign steps allow an array’s values to be read. An array element
is accessed using the name of the variable followed by brackets around the position from
which you are trying to read.

 int[] data = { 19, 40, 75, 76, 90 };

 line(data[0], 0, data[0], 100);

 line(data[1], 0, data[1], 100);

 line(data[2], 0, data[2], 100);

 line(data[3], 0, data[3], 100);

 line(data[4], 0, data[4], 100);

Remember, the fi rst element in the array is in the 0 position. If you try to access a
member of the array that lies outside the array boundaries, your program will terminate
and give an ArrayIndexOutOfBoundsException.

int[] data = { 19, 40, 75, 76, 90 };

println(data[0]); // Prints 19 to the console

println(data[2]); // Prints 75 to the console

println(data[5]); // ERROR! The last element of the array is 4

The length fi eld stores the number of elements in an array. This fi eld is stored within
the array and can be accessed with the dot operator (p. 107–108). The following example
demonstrates how to utilize it.

33-05

33-06

33-07

33-08

33-09

Reas_05_279-336.indd Sec4:304Reas_05_279-336.indd Sec4:304 5/23/07 3:52:10 PM5/23/07 3:52:10 PM

305 Data 4: Arrays

int[] data1 = { 19, 40, 75, 76, 90 };

int[] data2 = { 19, 40 };

int[] data3 = new int[127];

println(data1.length); // Prints "5" to the console

println(data2.length); // Prints "2" to the console

println(data3.length); // Prints "127" to the console

Usually, a for structure is used to access array elements, especially with large arrays.
The following example draws the same lines as code 33-08 but uses a for structure to
iterate through every value in the array.

 int[] data = { 19, 40, 75, 76, 90 };

 for (int i = 0; i < data.length; i++) {

 line(data[i], 0, data[i], 100);

 }

A for structure can also be used to put data inside an array—for instance, it can
calculate a series of numbers and then assign each value to an array element. The
following example stores the values from the sin() function in an array within
setup() and then displays these values as the stroke values for lines within draw().

 float[] sineWave = new float[width];

 for (int i = 0; i < width; i++) {

 // Fill the array with values from sin()

 float r = map(i, 0, width, 0, TWO_PI);

 sineWave[i] = abs(sin(r));

 }

 for (int i = 0; i < sineWave.length; i++) {

 // Set the stroke values to numbers read from the array

 stroke(sineWave[i] * 255);

 line(i, 0, i, height);

 }

Storing the coordinates of many elements is another way to use arrays to make a
program easier to read and manage. In the following example, the x[] array stores the
x-coordinate for each of the 12 elements in the array, and the speed[] array stores a
rate corresponding to each. Writing this program without arrays would have required
24 separate variables. Instead, it’s written in a fl exible way; simply changing the value
assigned to numLines sets the number of elements drawn to the screen.

33-10

33-11

33-12

Reas_05_279-336.indd Sec4:305Reas_05_279-336.indd Sec4:305 5/23/07 3:52:11 PM5/23/07 3:52:11 PM

306 Data 4: Arrays

 int numLines = 12;

 float[] x = new float[numLines];

 float[] speed = new float[numLines];

 float offset = 8; // Set space between lines

 void setup() {

 size(100, 100);

 smooth();

 strokeWeight(10);

 for (int i = 0; i < numLines; i++) {

 x[i] = i; // Set initial position

 speed[i] = 0.1 + (i / offset); // Set initial speed

 }

 }

 void draw() {

 background(204);

 for (int i = 0; i < x.length; i++) {

 x[i] += speed[i]; // Update line position

 if (x[i] > (width + offset)) { // If off the right,

 x[i] = -offset * 2; // return to the left

 }

 float y = i * offset; // Set y-coordinate for line

 line(x[i], y, x[i]+offset, y+offset); // Draw line

 }

 }

Storing mouse data

Arrays are often used to store data from the mouse. The pmouseX and pmouseY
variables store the cursor coordinates from the previous frame, but there’s no built-in
way to access the cursor values from earlier frames. At every frame, the mouseX, mouseY,
pmouseX, and pmouseY variables are replaced with new numbers and their previous
numbers are discarded. Creating an array is the easiest way to store the history of these
values. In the following example, the most recent 100 values from mouseY are stored in
a array and displayed on screen as a line from the left to the right edge of the screen. At
each frame, the values in the array are shifted to the right and the newest value is added
to the beginning.

33-13

Reas_05_279-336.indd Sec4:306Reas_05_279-336.indd Sec4:306 5/23/07 3:52:11 PM5/23/07 3:52:11 PM

307 Data 4: Arrays

 int[] y;

 void setup() {

 size(100, 100);

 y = new int[width];

 }

 void draw() {

 background(204);

 // Shift the values to the right

 for (int i = y.length-1; i > 0; i--) {

 y[i] = y[i-1];

 }

 // Add new values to the beginning

 y[0] = constrain(mouseY, 0, height-1);

 // Display each pair of values as a line

 for (int i = 1; i < y.length; i++) {

 line(i, y[i], i-1, y[i-1]);

 }

 }

Apply the same code simultaneously to the mouseX and mouseY values to store the
position of the cursor. Displaying these values each frame creates a trail behind the
cursor.

 int num = 50;

 int[] x = new int[num];

 int[] y = new int[num];

 void setup() {

 size(100, 100);

 noStroke();

 smooth();

 fill(255, 102);

 }

 void draw() {

 background(0);

 // Shift the values to the right

 for (int i = num-1; i > 0; i--) {

 x[i] = x[i-1];

 y[i] = y[i-1];

 }

33-14

33-15

Reas_05_279-336.indd Sec4:307Reas_05_279-336.indd Sec4:307 5/23/07 3:52:12 PM5/23/07 3:52:12 PM

308 Data 4: Arrays

 // Add the new values to the beginning of the array

 x[0] = mouseX;

 y[0] = mouseY;

 // Draw the circles

 for (int i = 0; i < num; i++) {

 ellipse(x[i], y[i], i/2.0, i/2.0);

 }

 }

The following example produces the same result as the previous one but uses a more
effi cient technique. Instead of sorting the array elements in each frame, the program
writes the new data to the next available array position. The elements in the array
remain in the same position once they are written, but they are read in a different order
each frame. Reading begins at the location of the oldest data element and continues
to the end of the array. At the end of the array, the % operator (p. 45) is used to wrap
back to the beginning. This technique is especially useful with larger arrays, to avoid
unnecessary copying of data that can slow down a program.

int num = 50;

int[] x = new int[num];

int[] y = new int[num];

int indexPosition = 0;

void setup() {

 size(100, 100);

 noStroke();

 smooth();

 fill(255, 102);

}

void draw() {

 background(0);

 x[indexPosition] = mouseX;

 y[indexPosition] = mouseY;

 // Cycle between 0 and the number of elements

 indexPosition = (indexPosition + 1) % num;

 for (int i = 0; i < num; i++) {

 // Set the array position to read

 int pos = (indexPosition + i) % num;

 float radius = (num-i) / 2.0;

 ellipse(x[pos], y[pos], radius, radius);

 }

}

33-16

33-15
cont.

Reas_05_279-336.indd Sec4:308Reas_05_279-336.indd Sec4:308 5/23/07 3:52:13 PM5/23/07 3:52:13 PM

309 Data 4: Arrays

Array functions

Processing provides a group of functions that assist in managing array data. Only four
of these functions are introduced here, but more are explained in the Extended Reference
included with the software and available online at www.processing.org/reference.
 The append() function expands an array by one element, adds data to the new
position, and returns the new array:

String[] trees = { "ash", "oak" };

append(trees, "maple"); // INCORRECT! Does not change the array

print(trees); // Prints "ash oak"

println();

trees = append(trees, "maple"); // Add "maple" to the end

print(trees); // Prints "ash oak maple"

println();

// Add "beech" to the end of the trees array, and creates a new

// array to store the change

String[] moretrees = append(trees, "beech");

print(moretrees); // Prints "ash oak maple beech"

The shorten() function decreases an array by one element by removing the last
element and returns the shortened array:

String[] trees = { "lychee", "coconut", "fig"};

trees = shorten(trees); // Remove the last element from the array

print(trees); // Prints "lychee coconut"

println();

trees = shorten(trees); // Remove the last element from the array

print(trees); // Prints "lychee"

The expand() function increases the size of an array. It can expand to a specifi c size, or
if no size is specifi ed, the array’s length will be doubled. If an array needs to have many
additional elements, it’s faster to use expand() to double the size than to use append()
to continually add one value. The following example saves a new mouseX value to an
array every frame. When the array becomes full, the size of the array is doubled and new
mouseX values proceed to fi ll the enlarged array.

int[] x = new int[100]; // Array to store x-coordinates

int count; // Store the number of array positions

void setup() {

 size(100, 100);

}

33-17

33-18

33-19

Reas_05_279-336.indd Sec4:309Reas_05_279-336.indd Sec4:309 5/23/07 3:52:13 PM5/23/07 3:52:13 PM

310 Data 4: Arrays

void draw() {

 x[count] = mouseX; // Assign new x-coordinate to the array

 count++; // Increment the counter

 if (count == x.length) { // If the x array is full,

 x = expand(x); // double the size of x

 println(x.length); // Write the new size to the console

 }

}

Array values cannot be copied with the assignment operator because they are
objects. The most common way to copy elements from one array to another is to use
special functions or to copy each element individually within a for structure. The
arraycopy() function is the most effi cient way to copy the entire contents of one array
to another. The data is copied from the array used as the fi rst parameter to the array
used as the second parameter. Both arrays must be the same length for it to work in the
confi guration shown below.

String[] north = { "OH", "IN", "MI" };

String[] south = { "GA", "FL", "NC" };

arraycopy(north, south); // Copy from north array to south array

print(south); // Prints "OH IN MI"

println();

String[] east = { "MA", "NY", "RI" };

String[] west = new String[east.length]; // Create a new array

arraycopy(east, west); // Copy from east array to west array

print(west); // Prints "MA NY RI"

New functions can be written to perform operations on arrays, but arrays behave
differently than data types such as int and char. When an array is used as a parameter
to a function, the address (location in memory) of the array is transferred into the
function instead of the actual data. No new array is created, and changes made within
the function affect the array used as the parameter.
 In the following example, the data[] array is used as the parameter to halve().
The address of data[] is passed to the d[] array in the halve() function. Because the
address of d[] and data[] is the same, they both affect the same data. When changes
are made to d[] on line 14, these changes are made to the values in data[]. The
draw() function is not used because the calculation is made only once and nothing is
drawn to the diplay window.

33-19
cont.

33-20

Reas_05_279-336.indd Sec4:310Reas_05_279-336.indd Sec4:310 5/23/07 3:52:14 PM5/23/07 3:52:14 PM

311 Data 4: Arrays

float[] data = { 19.0, 40.0, 75.0, 76.0, 90.0 };

void setup() {

 halve(data);

 println(data[0]); // Prints "9.5"

 println(data[1]); // Prints "20.0"

 println(data[2]); // Prints "37.5"

 println(data[3]); // Prints "38.0"

 println(data[4]); // Prints "45.0"

}

void halve(float[] d) {

 for (int i = 0; i < d.length; i++) { // For each array element,

 d[i] = d[i] / 2.0; // divide the value by 2

 }

}

Changing array data within a function without modifying the original array requires
some additional lines of code. In the following example, the array is passed into the
function as a parameter, a new array is made, the values from the original array are
copied in the new array, changes are made to the new array, and fi nally the modifi ed
array is returned. Like the previous example, the draw() function is not used because
nothing is drawn to the display window and the calculation is made only once.

float[] data = { 19.0, 40.0, 75.0, 76.0, 90.0 };

float[] halfData;

void setup() {

 halfData = halve(data); // Run the halve() function

 println(data[0] + ", " + halfData[0]); // Prints "19.0, 9.5"

 println(data[1] + ", " + halfData[1]); // Prints "40.0, 20.0"

 println(data[2] + ", " + halfData[2]); // Prints "75.0, 37.5"

 println(data[3] + ", " + halfData[3]); // Prints "76.0, 38.0"

 println(data[4] + ", " + halfData[4]); // Prints "90.0, 45.0"

}

float[] halve(float[] d) {

 float[] numbers = new float[d.length]; // Create a new array

 arraycopy(d, numbers);

 for (int i = 0; i < numbers.length; i++) { // For each element,

 numbers[i] = numbers[i] / 2; // divide the value by 2

 }

 return numbers; // Return the new array

}

33-21

33-22

Reas_05_279-336.indd Sec4:311Reas_05_279-336.indd Sec4:311 5/23/07 3:52:14 PM5/23/07 3:52:14 PM

312 Data 4: Arrays

Two-dimensional arrays

Data can also be stored and retrieved from arrays with more than one dimension. Using
the example from the beginning of this unit, the data points for the star are put into a 2D
array instead of two 1D arrays:

A 2D array is essentially a list of 1D arrays. It must be declared, then created, and then the
values can be assigned just as in a 1D array. The following syntax converts this array to
code:

int[][] points = { {50,18}, {61,37}, {83,43}, {69,60}, {71,82},

 {50,73}, {29,82}, {31,60}, {17,43}, {39,37} };

println(points[4][0]); // Prints 71

println(points[4][1]); // Prints 82

println(points[4][2]); // ERROR! This element is outside the array

println(points[0][0]); // Prints 50

println(points[9][1]); // Prints 37

This program shows how it all fi ts together.

 int[][] points = { {50,18}, {61,37}, {83,43}, {69,60},

 {71,82}, {50,73}, {29,82}, {31,60},

 {17,43}, {39,37} };

 void setup() {

 size(100, 100);

 fill(0);

 smooth();

 }

 void draw() {

 background(204);

 translate(mouseX - 50, mouseY - 50);

 beginShape();

 for (int i = 0; i < points.length; i++) {

 vertex(points[i][0], points[i][1]);

 }

 endShape();

 }

0

50 61 83 69 71points
1 2 3 4 5

50 29 31 17 39

6 7 8 9

[0]

18 37 43 60 82

[1] [2] [3] [4] [5]

73 82 60 43 37

[6] [7] [8]

[0]

[1]

[9]

33-23

33-24

Reas_05_279-336.indd Sec4:312Reas_05_279-336.indd Sec4:312 5/23/07 3:52:15 PM5/23/07 3:52:15 PM

313 Data 4: Arrays

It’s possible to continue and make 3D and 4D arrays by extrapolating these techniques.
However, multidimensional arrays can be confusing, and it’s often a better idea to
maintain multiple 1D or 2D arrays.

 Exercises
1. Create an array to store the y-coordinates of a sequence of shapes. Draw each shape
 inside draw() and use the values from the array to set the y-coordinate of each.
2. Write a function to multiply the values from two arrays together and return the result
 as a new array. Print the results to the console.
3. Use a 2D array to store the coordinates for a shape of your own invention. Use a for
 structure to draw the shape to the display window.

Reas_05_279-336.indd Sec4:313Reas_05_279-336.indd Sec4:313 5/23/07 3:52:16 PM5/23/07 3:52:16 PM

Reas_05_279-336.indd Sec4:314Reas_05_279-336.indd Sec4:314 5/23/07 3:52:16 PM5/23/07 3:52:16 PM

315

Image 2: Animation
This unit introduces techniques for displaying sequences of images successively,
creating animation.

Animation occurs when a series of images, each slightly different, are presented in quick
succession. A diverse medium with a century of history, animation has progressed from
the initial experiments of Winsor McCay to the commercial and realistic innovations
of early Walt Disney studio productions, to the experimental fi lms by such animators
as Lotte Reiniger and James Whitney in the mid-twentieth century. The high volume of
animated special effects in live-action fi lm and the deluge of animated children’s fi lms
are changing the role of animation in popular culture.
 There’s a long history of using software to extend the boundaries of animation.
Some of the fi rst computer graphics were presented as animation on fi lm during the
1960s. Because of the cost and expertise required to make these fi lms, they emerged
from high-profi le research facilities such as Bell Laboratories and IBM’s Scientifi c Center.
Kenneth C. Knowlton, then a researcher at Bell Labs, is an important protagonist in the
story of early computer animation. He worked separately with artists Stan VanDerBeek
and Lillian Schwartz to produce some of the fi rst fi lms made using computer graphics.
VanDerBeek and Knowlton’s Poem Field fi lms, produced throughout the 1960s,
utilized Knowlton’s BEFLIX code and punch cards to produce permutations of visual
micropatterns. Schwartz and Knowlton’s Pixillation (1970) featured a wide range of
effects made by contrasting geometric forms with organic motion. John Whitney
worked in collaboration with Jack Citron at IBM to make a number of fi lms including
the innovative Permutations. This fi lm expresses Whitney’s ideas about relationships
to music and abstract form by permuting an array of dots into infi nite kinetic patterns.
Other artists working with computer animation around this time were Larry Cuba, Peter
Foldes, and John Stehura.
 The paths of contemporary animation and software development often overlap.
The 3D visualization of the Death Star in Star Wars (1977) was one of the fi rst uses of
computer-generated animation in a feature fi lm. Custom software was written to
produce a wire-frame fl y-through of the massive ship. Interest in computer animation
briefl y peaked with Disney’s Tron in 1982, but soon receded due to the fi lm’s commercial
failure. The industry gradually rebuilt itself into its current role as a major force in
contemporary fi lm. Pixar, the hugely successful animation studio that produced Toy
Story and The Incredibles, operated for many years as a software development company.
Pixar’s RenderMan software (1989) enabled the rendering of 3D computer graphics as
photorealistic images. RenderMan became an industry standard and Pixar continues to
develop custom software for each fi lm. The success of the company’s fi lms refl ects its
successful marriage of technical virtuosity and masterful storytelling.
 Creating unique and experimental animation with software is no longer restricted

Reas_05_279-336.indd Sec4:315Reas_05_279-336.indd Sec4:315 5/23/07 3:52:17 PM5/23/07 3:52:17 PM

