
Conditionals 75

 Running the sketch, we now have a circle that turns around when it reaches the right-most edge, but runs
off the left-most edge of the screen. We’ll need to revise the conditional slightly.

If the ball goes off either the right or left edge, turn the ball around.

 Or more formally . . .

If x is greater than width or if x is less than zero, reverse speed .

 if ((x > width) || (x < 0)) {
 speed = speed * -1;

 }

 Example 5-6 puts it all together.

 Example 5-6: Bouncing ball

 int x = 0;
 int speed = 1;

 void setup() {
 size(200,200);
 smooth();
 }

 void draw() {
 background(255);

 x = x + speed;

 if ((x > width) || (x < 0)) {
 speed = speed * -1;
 }

 // Display circle at x location
 stroke(0);
 fill(175);
 ellipse(x,100,32,32);
 }

 Reversing the Polarity of a Number

 When we want to reverse the polarity of a number, we mean that we want a positive number to
become negative and a negative number to become positive. Th is is achieved by multiplying by –1.
Remind yourself of the following:

 • -5 * -1 = 5
 • -5 * -1 = -5
 • -1 * 1 = -1
 • -1 * -1 = 1

Remember, � means “or”.

Add the current speed to the x location.

If the object reaches either edge,
multiply speed by �1 to turn it around.

76 Learning Processing

 Exercise 5-9: Rewrite Example 5-6 so that the ball not only moves horizontally, but
vertically as well. Can you implement additional features, such as changing the size or color
of the ball based on certain conditions? Can you make the ball speed up or slow down in
addition to changing direction?

 Th e “ bouncing ball ” logic of incrementing and decrementing a variable can be applied in many ways
beyond the motion of shapes onscreen. For example, just as a square moves from left to right, a color
can go from less red to more red. Example 5-7 takes the same bouncing ball algorithm and applies it to
changing color .

 Example 5-7: “ Bouncing ” color

 float c1 = 0;
 float c2 = 255;

 float c1dir = 0.1;
 float c2dir = -0.1;

 void setup() {
 size(200,200);
 }

 void draw() {
 noStroke();

 // Draw rectangle on left
 fill(c1,0,c2);
 rect(0,0,100,200);

 // Draw rectangle on right
 fill(c2,0,c1);
 rect(100,0,100,200);

 // Adjust color values
 c1 = c1 + c1dir;
 c2 = c2 + c2dir;

 // Reverse direction of color change
 if (c1 < 0 || c1 > 255) {
 c1dir * = -1;
 }

 if (c2 < 0 || c2 > 255) {
 c2dir * = -1;
 }
 }

 Having the conditional statement in our collection of programming tools allows for more complex
motion. For example, consider a rectangle that follows the edges of a window.

 fi g. 5.9

Two variables for color.

Start by incrementing c1.
Start by decrementing c2.

Instead of reaching the edge of a window, these
variables reach the “edge” of color: 0 for no color
and 255 for full color. When this happens, just like
with the bouncing ball, the direction is reversed.

Conditionals 77

 One way to solve this problem is to think of the rectangle’s motion as having four possible states,
numbered 0 through 3. See Figure 5.10 .

 • State #0: left to right.
 • State #1: top to bottom.
 • State #2: right to left.
 • State #3: bottom to top.

 We can use a variable to keep track of the state number and adjust
the x , y coordinate of the rectangle according to the state. For example:
“ If the state is 2, x equals x minus 1. ”

 Once the rectangle reaches the endpoint for that state, we can change the state variable. “ If the state is 2:
(a) x equals x minus 1. (b) if x less than zero, the state equals 3. ”

 Th e following example implements this logic .

 Example 5-8: Square following edge, uses a “ state ” variable

 int x = 0; // x location of square
 int y = 0; // y location of square

 int speed = 5; // speed of square

 int state = 0;

 void setup() {
 size(200,200);
 }

 void draw() {
 background(100);

 // Display the square
 noStroke();
 fill(255);
 rect(x,y,10,10);
 if (state = = 0) {
 x = x + speed;
 if (x > width-10) {
 x = width-10;
 state = 1;
 }
 } else if (state = = 1) {
 y = y + speed;
 if (y > height-10) {
 y = height-10;
 state = 2;
 }

 fi g. 5.11

 fi g. 5.10

A variable to keep track of the square’s
“state.” Depending on the value of its state,
it will either move right, down, left, or up.

If, while the state is 0, it reaches the right
side of the window, change the state to 1.
Repeat this same logic for all states!

If the state is 0, move to the right.

 } else if (state = = 2) {
 x = x - speed;
 if (x < 0) {
 x = 0;
 state = 3;
 }
 } else if (state = = 3) {
 y = y - speed;
 if (y < 0) {
 y = 0;
 state = 0;
 }
 }
 }

 5.8 Physics 101
 For me, one of the happiest moments of my programming life was the moment I realized I could code
gravity. And in fact, armed with variables and conditionals, you are now ready for this moment.

 Th e bouncing ball sketch taught us that an object moves by altering its location according to speed.

location � location � speed

 Gravity is a force of attraction between all masses. When you drop a pen, the force of gravity from the
earth (which is overwhelmingly larger than the pen) causes the pen to accelerate toward the ground.
What we must add to our bouncing ball is the concept of “ acceleration ” (which is caused by gravity, but
could be caused by any number of forces). Acceleration increases (or decreases) speed. In other words,
acceleration is the rate of change of speed. And speed is the rate of change of location. So we just need
another line of code:

speed � speed � acceleration

 And now we have a simple gravity simulation.

 Example 5-9: Simple gravity

 float x = 100; // x location of square
 float y = 0; // y location of square

 float speed = 0; // speed of square
 float gravity = 0.1;

 void setup() {
 size(200,200);

 }

 void draw() {
 background(255);

 fi g. 5.12

A new variable, for gravity (i.e.,
acceleration). We use a relatively
small number (0.1) because this
acceleration accumulates over
time, increasing the speed. Try
changing this number to 2.0 and see
what happens.

78 Learning Processing

Conditionals 79

 // Display the square
 fill(0);
 noStroke();
 rectMode(CENTER);
 rect(x,y,10 , 10);

 y = y + speed;

 speed = speed + gravity;

 // If square reaches the bottom
 // Reverse speed
 if (y > height) {
 speed = speed * -0.95;
 }
 }

 Exercise 5-10: Continue with your design and add some of the functionality demonstrated
in this chapter. Some options:

 • Make parts of your design rollovers that change color when the mouse is over
certain areas.

 • Move it around the screen. Can you make it bounce off all edges of the window?
 • Fade colors in and out.

Add gravity to speed.

 Here is a simple version with Zoog.

 Example 5-10: Zoog and conditionals

 float x = 100;
 float y = 100;
 float w = 60;
 float h = 60;
 float eyeSize = 16;

 float xspeed = 3;
 float yspeed = 1;

 void setup() {
 size(200,200);
 smooth();
 }

 void draw() {
 // Change the location of Zoog by speed
 x = x + xspeed;
 y = y + yspeed;

Multiplying by �0.95 instead of �1 slows the square down
each time it bounces (by decreasing speed). This is known
as a “dampening” effect and is a more realistic simulation
of the real world (without it, a ball would bounce forever).

Zoog has variables for speed in the horizontal and vertical direction.

Add speed to location.

