
19

Chapter 2 CHAPTER 2

Getting Started with Processing2

The Processing project began in the spring of 2001 and was first used at a workshop
in Japan that August. Originally built as a domain-specific extension to Java targeted
at artists and designers, Processing has evolved into a full-blown design and proto-
typing tool used for large-scale installation work, motion graphics, and complex data
visualization. Processing is a simple programming environment that was created to
make it easier to develop visually oriented applications with an emphasis on anima-
tion and provide users with instant feedback through interaction. As its capabilities
have expanded over the past six years, Processing has come to be used for more
advanced production-level work in addition to its sketching role.

Processing is based on Java, but because program elements in Processing are fairly
simple, you can learn to use it from this book even if you don’t know any Java. If
you’re familiar with Java, it’s best to forget that Processing has anything to do with it
for a while, at least until you get the hang of how the API works. We’ll cover how to
integrate Java and Processing toward the end of the book.

The latest version of Processing can be downloaded at:

http://processing.org/download

An important goal for the project was to make this type of programming accessible
to a wider audience. For this reason, Processing is free to download, free to use, and
open source. But projects developed using the Processing environment and core
libraries can be used for any purpose. This model is identical to GCC, the GNU
Compiler Collection. GCC and its associated libraries (e.g., libc) are open source
under the GNU Public License (GPL), which stipulates that changes to the code
must be made available. However, programs created with GCC (examples too
numerous to mention) are not themselves required to be open source.

http://processing.org/download/

20 | Chapter 2: Getting Started with Processing

Processing consists of:

• The Processing Development Environment (PDE). This is the software that runs
when you double-click the Processing icon. The PDE is an Integrated
Development Environment with a minimalist set of features designed as a sim-
ple introduction to programming or for testing one-off ideas.

• A collection of commands (also referred to as functions or methods) that make
up the “core” programming interface, or API, as well as several libraries that sup-
port more advanced features, such as drawing with OpenGL, reading XML files,
and saving complex imagery in PDF format.

• A language syntax, identical to Java but with a few modifications. The changes
are laid out in detail toward the end of the book.

• An active online community, hosted at http://processing.org.

For this reason, references to “Processing” can be somewhat ambiguous. Are we talk-
ing about the API, the development environment, or the web site? I’ll be careful to
differentiate them when referring to each.

Sketching with Processing
A Processing program is called a sketch. The idea is to make Java-style programming
feel more like scripting, and adopt the process of scripting to quickly write code.
Sketches are stored in the sketchbook, a folder that’s used as the default location for
saving all of your projects. When you run Processing, the sketch last used will auto-
matically open. If this is the first time Processing is used (or if the sketch is no longer
available), a new sketch will open.

Sketches that are stored in the sketchbook can be accessed from File ➝ Sketchbook.
Alternatively, File ➝ Open... can be used to open a sketch from elsewhere on the
system.

Advanced programmers need not use the PDE and may instead use its libraries with
the Java environment of choice. (This is covered toward the end of the book.) How-
ever, if you’re just getting started, it’s recommended that you use the PDE for your
first few projects to gain familiarity with the way things are done. Although Process-
ing is based on Java, it was never meant to be a Java IDE with training wheels. To
better address our target audience, its conceptual model (how programs work, how
interfaces are built, and how files are handled) is somewhat different from Java’s.

Hello World
Programming languages are often introduced with a simple program that prints
“Hello World” to the console. The Processing equivalent is simply to draw a line:

line(15, 25, 70, 90);

http://processing.org

Sketching with Processing | 21

Enter this example and press the Run button, which is an icon that looks like the Play
button on any audio or video device. The result will appear in a new window, with a
gray background and a black line from coordinate (15, 25) to (70, 90). The (0, 0) coor-
dinate is the upper-lefthand corner of the display window. Building on this program to
change the size of the display window and set the background color, type in the code
from Example 2-1.

This version sets the window size to 400 × 400 pixels, sets the background to an
orange-red, and draws the line in white, by setting the stroke color to 255. By
default, colors are specified in the range 0 to 255. Other variations of the parameters
to the stroke() function provide alternate results:

stroke(255); // sets the stroke color to white
stroke(255, 255, 255); // identical to stroke(255)
stroke(255, 128, 0); // bright orange (red 255, green 128, blue 0)
stroke(#FF8000); // bright orange as a web color
stroke(255, 128, 0, 128); // bright orange with 50% transparency

The same alternatives work for the fill() command, which sets the fill color, and
the background() command, which clears the display window. Like all Processing
methods that affect drawing properties, the fill and stroke colors affect all geometry
drawn to the screen until the next fill and stroke commands are executed.

It’s also possible to use the editor of your choice instead of the built-in
editor. Simply select “Use External Editor” in the Preferences window
(Processing ➝ Preferences on Mac OS X, or File ➝ Preferences on
Windows and Linux). When using an external editor, editing will be
disabled in the PDE, but the text will reload whenever you press Run.

Hello Mouse
A program written as a list of statements (like the previous examples) is called a basic
mode sketch. In basic mode, a series of commands are used to perform tasks or cre-
ate a single image without any animation or interaction. Interactive programs are
drawn as a series of frames, which you can create by adding functions titled setup()
and draw(), as shown in the continuous mode sketch in Example 2-2. They are built-
in functions that are called automatically.

Example 2-1. Simple sketch

size(400, 400);
background(192, 64, 0);
stroke(255);
line(150, 25, 270, 350);

22 | Chapter 2: Getting Started with Processing

Example 2-2 is identical in function to Example 2-1, except that now the line follows
the mouse. The setup() block runs once, and the draw() block runs repeatedly. As
such, setup() can be used for any initialization; in this case, it’s used for setting the
screen size, making the background orange, and setting the stroke color to white.
The draw() block is used to handle animation. The size() command must always be
the first line inside setup().

Because the background() command is used only once, the screen will fill with lines
as the mouse is moved. To draw just a single line that follows the mouse, move the
background() command to the draw() function, which will clear the display window
(filling it with orange) each time draw() runs:

void setup() {
 size(400, 400);
 stroke(255);
}

void draw() {
 background(192, 64, 0);
 line(150, 25, mouseX, mouseY);
}

Basic mode programs are most commonly used for extremely simple examples, or for
scripts that run in a linear fashion and then exit. For instance, a basic mode program
might start, draw a page to a PDF file, and then exit.

Most programs employ continuous mode, which uses the setup() and draw()
blocks. More advanced mouse handling can also be introduced; for instance, the
mousePressed() method will be called whenever the mouse is pressed. So, in the
following example, when the mouse is pressed, the screen is cleared via the
background() command:

void setup() {
 size(400, 400);
 stroke(255);
}

void draw() {
 line(150, 25, mouseX, mouseY);
}

Example 2-2. Simple continuous mode sketch

void setup() {
 size(400, 400);
 stroke(255);
 background(192, 64, 0);
}

void draw() {
 line(150, 25, mouseX, mouseY);
}

Exporting and Distributing Your Work | 23

void mousePressed() {
 background(192, 64, 0);
}

More about basic versus continuous mode programs can be found in the Program-
ming Modes section of the Processing reference, which can be viewed from Help ➝

Getting Started or online at http://processing.org/reference/environment.

Exporting and Distributing Your Work
One of the most significant features of the Processing environment is its ability to
bundle your sketch into an applet or application with just one click. Select File ➝

Export to package your current sketch as an applet. This will create a folder named
applet inside your sketch folder. Opening the index.html file inside that folder will
open your sketch in a browser. The applet folder can be copied to a web site intact
and will be viewable by users who have Java installed on their systems. Similarly, you
can use File ➝ Export Application to bundle your sketch as an application for Win-
dows, Mac OS X, and Linux.

The applet and application folders are overwritten whenever you export—make a
copy or remove them from the sketch folder before making changes to the index.html
file or the contents of the folder.

More about the export features can be found in the reference; see http://processing.
org/reference/environment/export.html.

Saving Your Work
If you don’t want to distribute the actual project, you might want to create images of
its output instead. Images are saved with the saveFrame() function. Adding
saveFrame() at the end of draw() will produce a numbered sequence of TIFF-format
images of the program’s output, named screen-0001.tif, screen-0002.tif, and so on. A
new file will be saved each time draw() runs. Watch out because this can quickly fill
your sketch folder with hundreds of files. You can also specify your own name and
file type for the file to be saved with a command like:

saveFrame("output.png")

To do the same for a numbered sequence, use #s (hash marks) where the numbers
should be placed:

saveFrame("output-####.png");

For high-quality output, you can write geometry to PDF files instead of the screen, as
described in the section “More About the size() Method,” later in this chapter.

http://processing.org/reference/environment/
http://processing.org/reference/environment/export.html
http://processing.org/reference/environment/export.html

24 | Chapter 2: Getting Started with Processing

Examples and Reference
While many programmers learn to code in school, others teach themselves. Learning
on your own involves looking at lots of other code: running, altering, breaking, and
enhancing it until you can reshape it into something new. With this learning model
in mind, the Processing software download includes dozens of examples that demon-
strate different features of the environment and API.

The examples can be accessed from the File ➝ Examples menu. They’re grouped into
categories based on their functions (such as Motion, Typography, and Image) or the
libraries they use (such as PDF, Network, and Video).

Find an interesting topic in the list and try an example. You’ll see commands that are
familiar, such as stroke(), line(), and background(), as well as others that have not
yet been covered. To see how a function works, select its name, and then right-click
and choose Find in Reference from the pop-up menu (Find in Reference can also be
found beneath the Help menu). That will open the reference for that function in your
default web browser.

In addition to a description of the function’s syntax, each reference page includes an
example that uses the function. The reference examples are much shorter (usually
four or five lines apiece) and easier to follow than the longer code examples.

More About the size() Method
The size() command also sets the global variables width and height. For objects
whose size is dependent on the screen, always use the width and height variables
instead of a number (this prevents problems when the size() line is altered):

size(400, 400);

// The wrong way to specify the middle of the screen
ellipse(200, 200, 50, 50);

// Always the middle, no matter how the size() line changes
ellipse(width/2, height/2, 50, 50);

In the earlier examples, the size() command specified only a width and height for
the new window. An optional parameter to the size() method specifies how graph-
ics are rendered. A renderer handles how the Processing API is implemented for a
particular output method (whether the screen, or a screen driven by a high-end
graphics card, or a PDF file). Several renderers are included with Processing, and
each has a unique function. At the risk of getting too far into the specifics, here are
examples of how to specify them with the size() command along with descriptions
of their capabilities.

Examples and Reference | 25

size(400, 400, JAVA2D);
The Java2D renderer is used by default, so this statement is identical to
size(400, 400). The Java2D renderer does an excellent job with high-quality 2D
vector graphics, but at the expense of speed. In particular, working with pixels is
slower compared to the P2D and P3D renderers.

size(400, 400, P2D);
The Processing 2D renderer is intended for simpler graphics and fast pixel opera-
tions. It lacks niceties such as stroke caps and joins on thick lines, but makes up
for it when you need to draw thousands of simple shapes or directly manipulate
the pixels of an image or video.

size(400, 400, P3D);
Similar to P2D, the Processing 3D renderer is intended for speed and pixel oper-
ations. It also produces 3D graphics inside a web browser, even without the use
of a library like Java3D. Image quality is poorer (the smooth() command is dis-
abled, and image accuracy is low), but you can draw thousands of triangles very
quickly.

size(400, 400, OPENGL);
The OpenGL renderer uses Sun’s Java for OpenGL (JOGL) library for faster ren-
dering, while retaining Processing’s simpler graphics APIs and the PDE’s easy
applet and application export. To use OpenGL graphics, you must select Sketch
➝ Import Library ➝ OpenGL in addition to altering your size() command.
OpenGL applets also run within a web browser without additional modifica-
tion, but a dialog box will appear asking users whether they trust “Sun Micro-
systems, Inc.” to run Java for OpenGL on their computers. If this poses a
problem, the P3D renderer is a simpler, if less full-featured, solution.

size(400, 400, PDF, "output.pdf");
The PDF renderer draws all geometry to a file instead of the screen. Like the
OpenGL library, you must import the PDF library before using this renderer.
This is a cousin of the Java2D renderer, but instead writes directly to PDF files.

Each renderer has a specific role. P2D and P3D are great for pixel-based work, while
the JAVA2D and PDF settings will give you the highest quality 2D graphics. When
the Processing project first began, the P2D and P3D renderers were a single choice
(and, in fact, the only available renderer). This was an attempt to offer a unified
mode of thinking about drawing, whether in two or three dimensions. However, this
became too burdensome because of the number of tradeoffs that must be made
between 2D and 3D. A very different expectation of quality exists for 2D and 3D, for
instance, and trying to cover both sides in one renderer meant doing both poorly.

26 | Chapter 2: Getting Started with Processing

Loading and Displaying Data
One of the unique aspects of the Processing API is the way files are handled. The
loadImage() and loadStrings() functions each expect to find a file inside a folder
named data, which is a subdirectory of the sketch folder.

File handling functions include loadStrings(), which reads a text file into an array of
String objects, and loadImage(), which reads an image into a PImage object, the con-
tainer for image data in Processing.

// Examples of loading a text file and a JPEG image
// from the data folder of a sketch.
String[] lines = loadStrings("something.txt");
PImage image = loadImage("picture.jpg");

These examples may be a bit easier to read if you know the programming concepts of
data types and classes. Each variable has to have a data type, such as String or
PImage.

The String[] syntax means “an array of data of the class String.” This array is cre-
ated by the loadStrings command and is given the name lines; it will presumably be
used later in the program under that name. The reason loadStrings creates an array
is that it splits the something.txt file into its individual lines. The second command
creates a single variable of class PImage, with the name image.

The data Folder
The data folder addresses a common frustration when dealing with code that is tested
locally but deployed over the Web. Like Java, software written with Processing is sub-
ject to security restrictions that determine how a program can access resources such as
the local hard disk or other servers via the Internet. This prevents malicious developers
from writing code that could harm your computer or compromise your data.

The security restrictions can be tricky to work with during development. When run-
ning a program locally, data can be read directly from the disk, though it must be
placed relative to the user’s “working directory,” generally the location of the applica-
tion. When running online, data must come from a location on the same server. It
might be bundled with the code itself (in a JAR archive, discussed later, or from
another URL on the same server). For a local file, Java’s FileInputStream class can be
used. If the file is bundled in a JAR archive, the getResource() function is used. For a
file on the server, URL.openStream() might be employed. During the journey from
development to deployment, it may be necessary to use all three of these methods.

With Processing, these scenarios (and some others) are handled transparently by the
file API methods. By placing resources in the data folder, Processing packages the files
as necessary for online and offline use.

Functions | 27

To add a file to a Processing sketch, use the Sketch ➝ Add File command, or drag the
file into the editor window of the PDE. The data folder will be created if it does not
exist already.

To view the contents of the sketch folder, use the Sketch ➝ Show Sketch Folder com-
mand. This opens the sketch window in your operating system’s file browser.

In the file commands, it’s also possible to use full path names to local files, or URLs
to other locations if the data folder is not suitable:

// Load a text file and an image from the specified URLs
String[] lines = loadStrings("http://benfry.com/writing/map/locations.tsv");
PImage image = loadImage("http://benfry.com/writing/map/map.png");

Functions
The steps of the process outlined in the first chapter are commonly associated with
specific functions in the Processing API. For instance:

Acquire
loadStrings(), loadBytes()

Parse
split()

Filter
for(), if (item[i].startsWith())

Mine
min(), max(), abs()

Represent
map(), beginShape(), endShape()

Refine
fill(), strokeWeight(), smooth()

Interact
mouseMoved(), mouseDragged(), keyPressed()

This is not an exhaustive list, but simply another way to frame the stages of visualiza-
tion for those more familiar with code.

Libraries Add New Features
A library is a collection of code in a specified format that makes it easy to use within
Processing. Libraries have been important to the growth of the project because they
let developers make new features accessible to users without making them part of the
core Processing API.

28 | Chapter 2: Getting Started with Processing

Several core libraries come with Processing. These can be seen in the Libraries sec-
tion of the online reference (also available from the Help menu from within the
PDE); see http://processing.org/reference/libraries.

One example is the XML import library. This is an extremely minimal XML parser
(based on the open source project NanoXML) with a small download footprint
(approximately 30KB) that makes it ideal for online use.

To use the XML library in a project, choose Sketch ➝ Import Library ➝ xml. This
will add the following line to the top of the sketch:

import processing.xml.*;

Java programmers will recognize the import command. In Processing, this line also
determines what code is packaged with a sketch when it is exported as an applet or
application.

Now that the XML library is imported, you can issue commands from it. For instance,
the following line loads an XML file named sites.xml into a variable named xml:

XMLElement xml = new XMLElement(this, "sites.xml");

The xml variable can now be manipulated as necessary to read the contents. The full
example can be seen in the reference for its class, XMLElement, at http://processing.org/
reference/libraries/xml/XMLElement.html.

The this variable is used frequently with library objects because it lets the library
make use of the core API functions to draw to the screen or load files. The latter case
applies to the XML library, allowing XML files to be read from the data folder or
other locations supported by the file API methods.

Other libraries provide features such as writing QuickTime movie files, sending and
receiving MIDI commands, sophisticated 3D camera control, and access to MySQL
databases.

Sketching and Scripting
Processing sketches are made up of one or more tabs, with each tab representing a
piece of code. The environment is designed around projects that are a few pages of
code, and often three to five tabs in total. This covers a significant number of
projects developed to test and prototype ideas, often before embedding them into a
larger project or building a more robust application for broader deployment.

This small-scale development style is useful for data visualization in two primary sce-
narios. The most common scenario is when you have a data set in mind, or a ques-
tion that you’re trying to answer, and you need a quick way to load the data,
represent it, and see what’s there. This is important because it lets you take an inven-
tory of the data in question. How many elements are there? What are the largest and
smallest values? How many dimensions are we looking at? We’ll return to this notion
of exploring data in future chapters.

http://processing.org/reference/libraries/
http://processing.org/reference/libraries/xml/XMLElement.html
http://processing.org/reference/libraries/xml/XMLElement.html

Sketching and Scripting | 29

In the second scenario, the desired outcome is known, but the correct means of rep-
resenting the data and interacting with it have not yet been determined.

The idea of sketching is identical to that of scripting, except that you’re not working
in an interpreted scripting language, but rather gaining the performance benefit of
compiling to Java class files. Of course, strictly speaking, Java itself is an interpreted
language, but its bytecode compilation brings it much closer to the “metal” than lan-
guages such as JavaScript, ActionScript, Python, or Ruby.

Processing was never intended as the ultimate language for visual programming;
instead, we set out to make something that was:

• A sketchbook for our own work, simplifying the majority of tasks that we
undertake

• A programming environment suitable for teaching programming to a non-
traditional audience

• A stepping stone from scripting languages to more complicated or difficult lan-
guages such as full-blown Java or C++

At the intersection of these points is a tradeoff between speed and simplicity of use.
If we didn’t care about speed, it might make sense to use Python, Ruby, or many
other scripting languages. That is especially true for the education side. If we didn’t
care about making a transition to more advanced languages, we’d probably avoid a
C++ or Java-style syntax. But Java is a nice starting point for a sketching language
because it’s far more forgiving than C/C++ and also allows users to export sketches
for distribution via the Web.

Processing assembles our experience in building software of this kind (sketches of
interactive works or data-driven visualization) and simplifies the parts that we felt
should be easier, such as getting started quickly, and insulates new users from issues
like those associated with setting up Java.

Don’t Start by Trying to Build a Cathedral
If you’re already familiar with programming, it’s important to understand how Pro-
cessing differs from other development environments and languages. The Processing
project encourages a style of work that builds code quickly, understanding that
either the code will be used as a quick sketch or that ideas are being tested before
developing a final project. This could be misconstrued as software engineering her-
esy. Perhaps we’re not far from “hacking,” but this is more appropriate for the roles
in which Processing is used. Why force students or casual programmers to learn
about graphics contexts, threading, and event handling methods before they can
show something on the screen that interacts with the mouse? The same goes for
advanced developers; why should they always need to start with the same two pages
of code whenever they begin a project?

30 | Chapter 2: Getting Started with Processing

In another scenario, if you’re doing scientific visualization, the ability to try things
out quickly is a far higher priority than sophisticated code structure. Usually you
don’t know what the outcome will be, so you might build something one week to try
an initial hypothesis and build something new the next based on what was learned in
the first week. To this end, remember the following considerations as you begin
visualizing data with Processing:

• Be careful about creating unnecessary structures in your code. As you learn
about encapsulating your code into classes, it’s tempting to make ever-smaller
classes because data can always be distilled further. Do you need classes at the
level of molecules, atoms, or quarks? Just because atoms go smaller doesn’t
mean that we need to work at a lower level of abstraction. If a class is half a page
long, does it make sense to have six additional subclasses that are each half a
page long? Could the same thing be accomplished with a single class that is a
page and a half in total?

• Consider the scale of the project. It’s not always necessary to build enterprise-
level software on the first day. We’re asking questions about data, so figure out
the minimum code necessary to help answer that question.

• Do you really need to use a database? If you’re manipulating half a gigabyte of
data and have a gigabyte of RAM, can you shove the data into memory and play
with it directly? If so, use that option; it lets you avoid developing a schema for
the database before you actually know what you’re doing (or want to do) with
the data.

• Do you need to start with all the data? Having collected precious terabytes of
potentially useful information, do you need all of it to answer your first round of
questions? A small percentage, which will require less infrastructure, is usually
enough to indicate whether a larger project is even worth pursuing.

The point is to delay engineering work until it’s appropriate. The threshold for where
to begin engineering a piece of visualization software is much later than for tradi-
tional programming projects because there is a kind of “art” to the early process of
quick iteration.

Of course, once things are working, avoid the urge to rewrite for its own sake. A
rewrite should be used when addressing a completely different problem. If you’ve
managed to hit the nail on the head, you should refactor to clean up method names
and class interactions. But a full rewrite of already finished code is almost always a
bad idea, no matter how “ugly” it seems.

Ready?
In this chapter, we covered the basics of the Processing environment, as well as a bit
of the philosophy behind the environment itself and the type of software built with
the language. In the next chapter, we’ll get started representing our first data set.

