
Elements of Programming

Please note: a lot of this text is taken from Processing: A Programming Handbook for Visual Designers
and Artists, by Casey Reas and Ben Fry.

FUNCTIONS
Functions allow you to draw shapes, set colors, calculate numbers, and to execute
many other types of actions. A function’s name is usually a lowercase word followed
by a set of parentheses. In Processing, if there is a second word in the function the first
letter of the second word is capitalized, like the strokeWeight() function.

The comma-separated elements between the parentheses are called parameters, and they
affect the way the function works. Some functions have no parameters and others have
many.

example of a preset function in Processing:

size(400, 400);

You can also write your own functions in Processing — we’ll learn about that in a few weeks.

VARIABLES
“In software, data is stored as numbers and characters. Examples of digital data include a
photograph of a friend stored on your hard drive, a song downloaded from the Internet, and
a news article loaded through a web browser. Less obvious is the data continually created
and exchanged between computers and other devices. For example, computers are
continually receiving data from the mouse and keyboard. When writing a program, you
might create a data element to save the location of a shape, to store a color for later use, or
to continuously measure changes in cursor position.”

The first time a variable is written, it must be declared with a statement expressing its
datatype.

GLOBAL AND LOCAL VARIABLES
Global variables are introduced at the beginning of a program and are accessible within
every code block. Local variables are introduced within a certain code block and can only be
used within that code block. It is a good practice to only use variables where you really need
them. If you only really need a variable within a certain if statement or function, make your
variable local; it saves computer space, and you’ll get less errors and confusion.

TIPS
• Different variables can’t have the same name.
• Name variables who words or single letters — not half words that only make sense to you.
• Reserved words: Some words are essential to the Processing language, and their use is

restricted to their intended use. For example, the int data type is an integral component of
the language. It can be used only to declare a variable of that type and cannot be used as
the name for a variable. The following program produces an error:

 float int = 50; // ERROR! Unexpected token: float

Elements of Programming

Here is a list of reserved words that you can’t use as variable names:

- VARIABLE TYPES:
 In Processing:
 - int
 - Datatype for integers, numbers without a decimal point.

 int a;
 OR
 int a = 23;
 - float
 - Data type for floating-point numbers, e.g. numbers that have a decimal point.

 float a;
 OR
 float a = 1.5387;
 - String
 - Data type for a sequence of characters. A String is defined between double
 quotation marks.

 String mywords;
 OR
 String mywords = “This is a sentence”;
 - boolean
 - Datatype for the Boolean values true and false. It is common to use boolean values
 with control statements to determine the flow of a program.

 boolean a = false;
 OR
 boolean a;

 - mouseX & mouse Y (system variables)
 - The system variable mouseX and mouseY always contain the current horizontal and
 vertical coordinates of the mouse.

 line(mouseX, 20, mouseX, 80);

 Also see:
 - PImage, byte, char, color, double, float, long, pmouseX, pmouseY, PFont, PShape

Elements of Programming

CODE BLOCKS
Code inside a set of braces {} is called a block. The two major code blocks structuring most
Processing programs are setup() and draw(). A typical Processing program will hold most
code in these two blocks. The structure looks like this:

 void setup(){
 // code setting up the size and background color goes here
 }
 void draw(){
 // code that runs continuously goes here
 }

CONDITIONALS
Conditional statements (if/else) in combination with relational expressions (<,>, <=, >=,
==, !=, etc.) and logical operators (&&, ||, !) help control the flow of a program. Building
on the work of the logicians Leibniz and Boole, modern
computers use logical operations such as AND, OR, and NOT to determine which lines of
code are run and which are not.

 if (test) {
 statements
}

OR

 if (test) {
 statements
} else {
 statements
}

OR

 if (test) {
 statements
} else if{
 statements
} else{
 statements
}

Elements of Programming

ITERATION
FOR LOOPS
Iterative structures are used to compact lengthy lines of repetitive code. Decreasing
the length of the code can make programs easier to manage and can also help to
reduce errors.

 for (init; test; update) {
statements

}
 for (int i = 20; i < 80; i += 5) {
 line(20, i, 80, i+15);
 }

Elements of Programming

TIPS
FORMATTING
Be sure to indent statements inside of code blocks. When you introduce your global
variables at the top of your document, skip a line. Aim for clarity and readability. Make sure
all your braces and parentheses are closed, and you have semi-colons at the end of your
statements. command T on a Mac will auto-format your code.

PRINTLN()
Use print() and println() to test variables and expressions in the command line. Use it
anytime you need to have a better sense of what your code is doing.

COMMENTING
/* Comment everything. Say what each line of code is doing, or what you think it’s doing. If
in doubt, comment. If you don’t know what a line of code is doing, make a comment above
it about what you think it’s doing, and why it confuses you. If you think one line of code is
the reason your program isn’t working, make a comment. Make comments at the top of
your code saying what you were aiming for conceptually, and where you actually got
technically. Make a comment when you understand perfectly what your code is doing — it’s
so satisfying to say so. The practice of commenting code helps the programming student to
become conscious of what code is doing and logical processes by articulating it in natural
language, and it helps other people looking at your code to understand what it’s doing
quickly. */

MAKE MISTAKES
Make lots of mistakes. This is how you will learn. When you don’t understand what your
code is doing, email it to your prof (me) or someone who does.

