
117

Math 3: Trigonometry
This unit introduces the basics of trigonometry and how to utilize it for generating form.

Syntax introduced:
PI, QUARTER_PI, HALF_PI, TWO_PI, radians(), degrees()

sin(), cos(), arc()

Trigonometry defi nes the relationships between the sides and angles of triangles. The
trigonometric functions sine and cosine generate repeating numbers that can be used to
draw waves, circles, arcs, and spirals.

Angles, Waves

Degrees are a common way to measure angles. A right angle is 90°, halfway around
a circle is 180°, and the full circle is 360°. In working with trigonometry, angles are
measured in units called radians. Using radians, the angle values are expressed in
relation to the mathematical value π, written in Latin characters as “pi” and pronounced
“pie.” In terms of radians, a right angle is π/2, halfway around a circle is simply π, and
the full circle is 2π.

The numerical value of π is a constant thought to be be infi nitely long and without a
repeating pattern. It is the ratio of the circumference of a circle to its diameter. When
writing Processing code, use the mathematical constant PI to represent this number.
Other commonly used values of π are expressed with the constants QUARTER_PI,
HALF_PI, and TWO_PI. Run the following line of code to see the value of π to 8
signifi cant digits.

println(PI); // Prints the value of PI to the text area

In casual use, the numerical value of π is 3.14, and 2π is 6.28. Angles can be converted
from degrees to radians with the radians() function, or vice versa using degrees().

Degree values

90

45

30

180

270

0,360

Radian values

π/2

π/4

π/6

π

π+π/2

0,2π

14-01

Reas_03_101-172.indd Sec2:117Reas_03_101-172.indd Sec2:117 5/23/07 1:33:35 PM5/23/07 1:33:35 PM

118 Math 3: Trigonometry

This short program demonstrates the conversions between these representations:

float r1 = radians(90);

float r1 = radians(180);

println(r1); // Prints "1.5707964"

println(r2); // Prints "3.1415927"

float d1 = degrees(PI);

float d2 = degrees(TWO_PI);

println(d1); // Prints "180.0"

println(d2); // Prints "360.0"

If you prefer working with degrees, use the radians() function in your programs to
convert the degree values for use with functions that require radian values.
 The sin() and cos() functions are used to determine the sine and cosine value
of any angle. Each of these functions requires one parameter:

 sin(angle)

 cos(angle)

The angle parameter is always specifi ed as a radian value. The values returned
from these functions are always between the fl oating-point values of -1.0 and 1.0.
The relationship between sine values and angles are shown here:

As angles increase in value, the sine values repeat. At the angle 0.0, the value of sine is
also 0.0, and this value decreases as the angle increases. When the angle reaches 90.0°
(π/2), the sine value increases until is it zero again at the angle 180.0° (π), then it
continues to increase until the angle reaches 270.0° (π + π/2), at which point it begins
decreasing until the angle reaches 360.0° (2π). At this point, the values repeat the cycle.
The sine values can been seen by putting a sin() function inside a for structure and
iterating while changing the angle value:

1

0

0Degrees

Sine wave

Constants

Radians
90 180 270 360

0Sine value -1 0 1 0

0 HALF_PI PI PI+HALF_PI TWO_PI

0 ππ/2 π+π/2 2π

Decimal radians 0 1.57 3.14 4.71 6.28

-1

14-02

Reas_03_101-172.indd Sec2:118Reas_03_101-172.indd Sec2:118 5/23/07 1:33:36 PM5/23/07 1:33:36 PM

119 Math 3: Trigonometry

for (float angle = 0; angle < TWO_PI; angle += PI/24.0) {

 println(sin(angle));

}

Because the values from sin() are numbers between -1.0 and 1.0, they are easy to use
in controlling a composition. Multiplying the numbers by 50.0, for example, will return
values between -50.0 and 50.0.

for (float angle = 0; angle < TWO_PI; angle += PI/24.0) {

 println(sin(angle) * 50.0);

}

To convert the sine values to a range of positive numbers, fi rst add the value 1.0 to create
numbers between 0.0 and 2.0. Divide that number by 2.0 to get a number between 0.0
and 1.0, which can then be simply remapped to any range. Alternatively, the map()
function can be used to convert the values from sin() to any range. In this example, the
values from sin() are put into the range between 0 and 1000.

for (float angle = 0; angle < TWO_PI; angle += PI/24.0) {

 float newValue = map(sin(angle), -1, 1, 0, 1000);

 println(newValue);

}

If we set the y-coordinates for a series of points with the numbers returned from the
sin() function and continually increase the value of the angle parameter before each
new coordinate is calculated, the sine wave emerges:

size(700, 100);

noStroke();

fill(0);

float angle = 0.0;

for (int x = 0; x <= width; x += 5) {

 float y = 50 + (sin(angle) * 35.0);

 rect(x, y, 2, 4);

 angle += PI/40.0;

}

Replacing some fi xed numbers in the previous program with variables allows you to
control the waveform by simply changing the values of the variables. The offset
variable controls the y-coordinates of the wave, the scaleVal variable controls the

14-03

14-04

14-05

14-06

Reas_03_101-172.indd Sec2:119Reas_03_101-172.indd Sec2:119 5/23/07 1:33:37 PM5/23/07 1:33:37 PM

120 Math 3: Trigonometry

Modulating a sine wave
Different values for the variables in code 14-07 create a range of waves.
Notice how each variable affects a different attribute of the wave.

offset = 25

offset = 75

scaleVal = 5.0

scaleVal = 45.0

angleInc = PI/12.0

angleInc = PI/90.0

angle = HALF_PI

angle = PI

Reas_03_101-172.indd Sec2:120Reas_03_101-172.indd Sec2:120 5/23/07 1:33:37 PM5/23/07 1:33:37 PM

121 Math 3: Trigonometry

height of the wave, and the angleInc variable controls the speed at which the angle
increases, thereby creating a wave with a higher or lower frequency.

size(700, 100);

noStroke();

smooth();

fill(0);

float offset = 50.0; // Y offset

float scaleVal = 35.0; // Scale value for the wave magnitude

float angleInc = PI/28.0; // Increment between the next angle

float angle = 0.0; // Angle to receive sine values from

for (int x = 0; x <= width; x += 5) {

 float y = offset + (sin(angle) * scaleVal);

 rect(x, y, 2, 4);

 angle += angleInc;

}

The cos() function returns values in the same range and pattern as sin(), but the
numbers are offset by π/2 radians (90°).

size(700, 100);

noStroke();

smooth();

float offset = 50.0;

float scaleVal = 20.0;

float angleInc = PI/18.0;

float angle = 0.0;

for (int x = 0; x <= width; x += 5) {

 float y = offset + (sin(angle) * scaleVal);

 fill(255);

 rect(x, y, 2, 4);

 y = offset + (cos(angle) * scaleVal);

 fill(0);

 rect(x, y, 2, 4);

 angle += angleInc;

}

14-07

14-08

Reas_03_101-172.indd Sec2:121Reas_03_101-172.indd Sec2:121 5/23/07 1:33:38 PM5/23/07 1:33:38 PM

122 Math 3: Trigonometry

The following examples demonstrate ways to use the numbers from the sin() function
to generate shapes.

size(700, 100);

float offset = 50;

float scaleVal = 30.0;

float angleInc = PI/56.0;

float angle = 0.0;

beginShape(TRIANGLE_STRIP);

for (int x = 4 ; x <= width+5; x += 5) {

 float y = sin(angle) * scaleVal;

 if ((x % 2) == 0) { // Every other time through the loop

 vertex(x, offset + y);

 } else {

 vertex(x, offset - y);

 }

 angle += angleInc;

}

endShape();

size(700, 100);

smooth();

strokeWeight(2);

float offset = 126.0;

float scaleVal = 126.0;

float angleInc = 0.42;

float angle = 0.0;

for (int x = -52; x <= width; x += 5) {

 float y = offset + (sin(angle) * scaleVal);

 stroke(y);

 line(x, 0, x+50, height);

 angle += angleInc;

}

14-09

14-10

Reas_03_101-172.indd Sec2:122Reas_03_101-172.indd Sec2:122 5/23/07 1:33:38 PM5/23/07 1:33:38 PM

123 Math 3: Trigonometry

size(700, 100);

smooth();

fill(255, 20);

float scaleVal = 18.0;

float angleInc = PI/28.0;

float angle = 0.0;

for (int offset = -10; offset < width+10; offset += 5) {

 for (int y = 0; y <= height; y += 2) {

 float x = offset + (sin(angle) * scaleVal);

 noStroke();

 ellipse(x, y, 10, 10);

 stroke(0);

 point(x, y);

 angle += angleInc;

 }

 angle += PI;

}

Circles, Arcs, Spirals

Circles can be drawn from sine and cosine waves. The example below has an angle that
increments by 12°, all the way up to 360°. On each step, the cos() value of the angle is
used to draw the x-coordinate, and the sin() value draws the y-coordinate. Because
sin() and cos() return numbers between -1.0 and 1.0, the result is multiplied by the
radius variable to draw a circle with radius 38. Adding 50 to the x and y positions sets
the center of the circle at (50,50).

 noStroke();

 smooth();

 int radius = 38;

 for (int deg = 0; deg < 360; deg += 12) {

 float angle = radians(deg);

 float x = 50 + (cos(angle) * radius);

 float y = 50 + (sin(angle) * radius);

 ellipse(x, y, 6, 6);

 }

14-11

14-12

Reas_03_101-172.indd Sec2:123Reas_03_101-172.indd Sec2:123 5/23/07 1:33:39 PM5/23/07 1:33:39 PM

124 Math 3: Trigonometry

If the angle is incremented only part of the way around the circle, an arc is drawn. For
example, changing line 4 in the preceding program gives the following result:

 noStroke();

 smooth();

 int radius = 38;

 for (int deg = 0; deg < 220; deg += 12) {

 float angle = radians(deg);

 float x = 50 + (cos(angle) * radius);

 float y = 50 + (sin(angle) * radius);

 ellipse(x, y, 6, 6);

 }

To simplify drawing arcs, Processing includes an arc() function:

 arc(x, y, width, height, start, stop)

Arcs are drawn along the outer edge of an ellipse defi ned by the x, y, width, and height
parameters. The start and stop parameters specify the angles needed to draw the arc
form in units of radians. The following examples show the function in use.

 strokeWeight(2);

 arc(50, 55, 50, 50, 0, HALF_PI);

 arc(50, 55, 60, 60, HALF_PI, PI);

 arc(50, 55, 70, 70, PI, TWO_PI - HALF_PI);

 noFill();

 arc(50, 55, 80, 80, TWO_PI - HALF_PI, TWO_PI);

 smooth();

 noFill();

 randomSeed(0);

 strokeWeight(10);

 stroke(0, 150);

 for (int i = 0; i < 160; i += 10) {

 float begin = radians(i);

 float end = begin + HALF_PI;

 arc(67, 37, i, i, begin, end);

 }

14-13

14-14

14-15

Reas_03_101-172.indd Sec2:124Reas_03_101-172.indd Sec2:124 5/23/07 1:33:39 PM5/23/07 1:33:39 PM

125 Math 3: Trigonometry

To create a spiral, multiply the sine and cosine values by increasing or decreasing scalar
values. In the following examples, the spiral grows as the radius variable increases:

 noStroke();

 smooth();

 float radius = 1.0;

 for (int deg = 0; deg < 360*6; deg += 11) {

 float angle = radians(deg);

 float x = 75 + (cos(angle) * radius);

 float y = 42 + (sin(angle) * radius);

 ellipse(x, y, 6, 6);

 radius = radius + 0.34;

 }

 smooth();

 float radius = 0.15;

 float cx = 33; // Center x- and y-coordinates

 float cy = 66;

 float px = cx; // Start with center as the

 float py = cy; // previous coordinate

 for (int deg = 0; deg < 360*5; deg += 12) {

 float angle = radians(deg);

 float x = cx + (cos(angle) * radius);

 float y = cy + (sin(angle) * radius);

 line(px, py, x, y);

 radius = radius * 1.05;

 px = x;

 py = y;

 }

The content of this unit is applied to controlling movement in Motion 2 (p. 291).

 Exercises
1. Create a composition with the data generated using sin().
2. Explore drawing circles and arcs with sin() and cos(). Develop a composition
 from the results of the exploration.
3. Generate a series of spirals and organize them into a composition.

14-16

14-17

Reas_03_101-172.indd Sec2:125Reas_03_101-172.indd Sec2:125 5/23/07 1:33:39 PM5/23/07 1:33:39 PM

Reas_03_101-172.indd Sec2:126Reas_03_101-172.indd Sec2:126 5/23/07 1:33:40 PM5/23/07 1:33:40 PM

127

Math 4: Random
This unit introduces the basics of trigonometry and random numbers and explains
how to utilize them for generating form.

Syntax introduced:
random(), randomSeed(), noise(), noiseSeed()

Random compositional choices have a long history, particularly in modern art. In 1913
Marcel Duchamp’s 3 Stoppages Étalon employed the curves of dropped threads to derive
novel units of measurement. Jean Arp used chance operations to defi ne the position of
elements in his collages. The composer John Cage sometimes tossed coins to determine
the order and duration of notes in his scores. Artists integrate chance, randomness, and
noise into their work either as a creative exercise or as a way of relinquishing some
control to an external force. Actions like dropping, throwing, rolling, etc., deprive the
artists of certain aspects of decisions. The world’s chaos can be channeled into making
images and objects with physical media. In contrast, computers are machines that make
consistent and accurate calculations and must therefore simulate random numbers to
approximate the kind of chance operations used in nondigital art.
 There is an obvious contrast between rigid structure and complete chaos, and some
of the most satisfying aesthetic experiences are created by infusing one with the other.
The tension between order and chaos can actively engage our attention:

If a composition is obviously Conversely, if a composition A balance between the two can
ordered, it will not hold is entirely chaotic, it will yield a more satisfying result.
attention beyond a quick glance. also not retain one’s gaze.

Unexpected values

The random() function is used to create unpredictable values within the range specifi ed
by its parameters.

 random(high)

 random(low, high)

When one parameter is passed to the function, it returns a float from zero up to (but
not including) the value of the parameter. The function call random(5.0) returns

Reas_03_101-172.indd Sec2:127Reas_03_101-172.indd Sec2:127 5/23/07 1:33:41 PM5/23/07 1:33:41 PM

