
61

Control 2: Repetition

This unit focuses on controlling the fl ow of programs with iterative structures.

Syntax introduced:
for

The early history of computers is the history of automating calculation. A “computer”
was originally a person who was paid to calculate math by hand. What we know as
a computer today emerged from machines built to automate tedious mathematical
calculations. The earliest mechanical computers were calculators developed for speed
and accuracy in performing repetitive calculations. Because of this heritage, computers
are excellent at executing repetitive tasks accurately and quickly. Modern computers
are also logic machines. Building on the work of the logicians Leibniz and Boole, modern
computers use logical operations such as AND, OR, and NOT to determine which lines of
code are run and which are not.

Iteration

Iterative structures are used to compact lengthy lines of repetitive code. Decreasing
the length of the code can make programs easier to manage and can also help to
reduce errors. The table below shows equivalent programs written without an iterative
structure and with a for structure. The original 14 lines of code on the left are reduced to
the 4 lines on the right:

Original code Code expressed using a for structure

size(200, 200); size(200, 200);

line(20, 20, 20, 180); for (int i = 20; i < 150; i += 10) {

line(30, 20, 30, 180); line(i, 20, i, 180);

line(40, 20, 40, 180); }

line(50, 20, 50, 180);

line(60, 20, 60, 180);

line(70, 20, 70, 180);

line(80, 20, 80, 180);

line(90, 20, 90, 180);

line(100, 20, 100, 180);

line(110, 20, 110, 180);

line(120, 20, 120, 180);

line(130, 20, 130, 180);

line(140, 20, 140, 180);

Reas_01_001-084.indd Sec2:61Reas_01_001-084.indd Sec2:61 5/23/07 1:20:47 PM5/23/07 1:20:47 PM

62 Control 2: Repetition

for (init; test; update) {
 statements
}

truetrue

test

init

update

statements

falsefalse

for (int i = 20; i < 80; i += 5) {
 line(20, i, 80, i+15);
}

truetrue

i < 80

int i = 20

i += 5

line(20, i, 80, i+15);

falsefalse

General case for structure

A specific for structure

Repetition
The fl ow of a for structure shown as a diagram. These images show the central importance of
the test statement in deciding whether to run the code in the block or to exit. The general case
shows the generic format, and the specifi c case shows one example of how the format can be
used within a program.

Reas_01_001-084.indd Sec2:62Reas_01_001-084.indd Sec2:62 5/23/07 1:20:48 PM5/23/07 1:20:48 PM

63 Control 2: Repetition

The for structure performs repetitive calculations and is structured like this:

 for (init; test; update) {

 statements

 }

The parentheses associated with the structure enclose three statements: init, test, and
update. The statements inside the block are run continuously while the test evaluates
to true. The init portion assigns the initial value of the variable used in the test. The
update is used to modify the variable after each iteration through the block. A for
structure runs in the following sequence:

 1. The init statement is run

 2. The test is evaluated to true or false

 3. If the test is true, continue to step 4. If the test is false, jump to step 6

 4. Run the statements within the block

 5. Run the update statement and jump to step 2

 6. Exit the structure and continue running the program

The following examples demonstrate how the for structure is used within a program to
control the way shapes are drawn to the display window.

 // The init is "int i = 20", the test is "i < 80",

 // and the update is "i += 5". Notice the semicolon

 // terminating the first two elements

 for (int i = 20; i < 80; i += 5) {

 // This line will continue to run until "i"

 // is greater than or equal to 80

 line(20, i, 80, i+15);

 }

 for (int x = -16; x < 100; x += 10) {

 line(x, 0, x+15, 50);

 }

 strokeWeight(4);

 for (int x = -8; x < 100; x += 10) {

 line(x, 50, x+15, 100);

 }

 noFill();

 for (int d = 150; d > 0; d -= 10) {

 ellipse(50, 50, d, d);

 }

6-01

6-02

6-03

Reas_01_001-084.indd Sec2:63Reas_01_001-084.indd Sec2:63 5/23/07 1:20:48 PM5/23/07 1:20:48 PM

64 Control 2: Repetition

All for one and one for all
The for structure is fl exible, but it always follows the rules. These examples show how it can be
used to generate various patterns.

for (int x = 20; x <= 80; x += 5) {
 line(x, 20, x, 80);
}

for (int x = 20; x <= 80; x += 5) {
 line(20, x, 80, x);
}

for (int x = 20; x < 80; x += 5) {
 line(x+20, 20, x, 80);
}

for (float x = 80; x > 20; x -= 5) {
 line(20, x+20, 80, x);
}

for (float x = 20; x < 80; x *= 1.2) {
 line(x, 20, x, 80);
}

for (float x = 80; x > 20; x /= 1.2) {
 line(20, x, 80, x);
}

for (int x = 20; x <= 85; x += 5) {
 if (x <= 50) {
 line(x, 20, x, 60);
 } else {
 line(x, 40, x, 80);
 }
}

for (int x = 20; x <= 80; x += 5) {
 if ((x % 10) == 0) {
 line(20, x, 50, x);
 } else {
 line(50, x, 80, x);
 }
}

Reas_01_001-084.indd Sec2:64Reas_01_001-084.indd Sec2:64 5/23/07 1:20:49 PM5/23/07 1:20:49 PM

65 Control 2: Repetition

 for (int i = 0; i < 100; i += 2) {

 stroke(255-i);

 line(i, 0, i, 200);

 }

Nested iteration

The for structure produces repetitions in one dimension. Nesting one of these
structures into another compounds their effect, creating iteration in two dimensions.
Instead of drawing 9 points and then drawing another 9 points, they combine to create
81 points; for each point drawn in the outer structure, 9 points are drawn in the inner
structure. The inner structure runs through a complete cycle for each single iteration of
the outer structure. In the following examples, the two dimensions are translated into
x-coordinates and y-coordinates:

 for (int y = 10; y < 100; y += 10) {

 point(10, y);

 }

 for (int x = 10; x < 100; x += 10) {

 point(x, 10);

 }

 for (int y = 10; y < 100; y += 10) {

 for (int x = 10; x < 100; x += 10) {

 point(x, y);

 }

 }

This technique is useful for creating diverse patterns and effects. The numbers produced
by embedding iterative elements can be applied to color, position, size, transparency, and
any other visual attribute.

 fill(0, 76);

 noStroke();

 smooth();

 for (int y = -10; y <= 100; y += 10) {

 for (int x = -10; x <= 100; x += 10) {

 ellipse(x + y/8.0, y + x/8.0, 15 + x/2, 10);

 }

 }

6-04

6-05

6-06

6-07

6-08

Reas_01_001-084.indd Sec2:65Reas_01_001-084.indd Sec2:65 5/23/07 1:20:49 PM5/23/07 1:20:49 PM

66 Control 2: Repetition

for (int y = 20; y <= 80; y += 5) {

 for (int x = 20; x <= 80; x += 5) {

 point(x, y);

 }

}

for (int y = 20; y <= 80; y += 3) {

 for (int x = 20; x <= 80; x += 10) {

 point(x, y);

 }

}

for (int y = 20; y <= 80; y += 10) {

 for (int x = 20; x <= y; x += 5) {

 line(x, y, x-3, y-3);

 }

}

for (float y = 20; y <= 80; y *= 1.2) {

 for (int x = 20; x <= 80; x += 5) {

 line(x, y, x, y-2);

 }

}

for (int y = 20; y <= 85; y += 5) {

 for (int x = 20; x <= 85; x += 5) {

 if (x <= 50) {

 line(x, y, x-3, y-3);

 } else {

 line(x, y, x-3, y+3);

 }

 }

}

for (int y = 20; y <= 80; y += 5) {

 for (int x = 20; x <= 80; x += 5) {

 if ((x % 10) == 0) {

 line(x, y, x+3, y-3);

 } else {

 line(x, y, x+3, y+3);

 }

 }

}

Embedding (nesting)
Embedding one for structure inside another is a highly malleable technique for drawing patterns.
These examples show only a few of the possible options.

Reas_01_001-084.indd Sec2:66Reas_01_001-084.indd Sec2:66 5/23/07 1:20:49 PM5/23/07 1:20:49 PM

67 Control 2: Repetition

 noStroke();

 for (int y = 0; y < 100; y += 10) {

 for (int x = 0; x < 100; x += 10) {

 fill((x+y) * 1.4);

 rect(x, y, 10, 10);

 }

 }

 for (int y = 1; y < 100; y += 10) {

 for (int x = 1; x < y; x += 10) {

 line(x, y, x+6, y+6);

 line(x+6, y, x, y+6);

 }

 }

Formatting code blocks

It’s important to space code so the blocks are clear. The lines inside a block are typically
offset to the right with spaces or tabs. When programs become longer, clearly defi ning
the beginning and end of the block reveals the structure of the program and makes it
more legible. This is the convention used in this book:

int x = 50;

if (x > 100) {

 line(20, 20, 80, 80);

} else {

 line(80, 20, 20, 80);

}

This is an alternative format that is sometimes used elsewhere:

int x = 50;

if (x > 100)

{

 line(20, 20, 80, 80);

}

else

{

 line(20, 80, 80, 20);

}

6-09

6-10

6-11

6-12

Reas_01_001-084.indd Sec2:67Reas_01_001-084.indd Sec2:67 5/23/07 1:20:50 PM5/23/07 1:20:50 PM

68 Control 2: Repetition

It’s essential to use formatting to show the hierarchy of your code. The Processing
environment will attempt basic formatting as you type, and you can use the “Auto
Format” function from the Tools menu to clean up your code at any time. The line()
function in the following code fragment is inside the if structure, but the spacing does
not reveal this at a quick glance. Avoid formatting code like this:

int x = 50;

if (x > 100) {

line(20, 20, 80, 80); // Avoid formatting code like this

} else { // because it makes it difficult to see

line(80, 20, 20, 80); // what is inside the block

}

 Exercises
1. Draw a regular pattern with fi ve lines. Rewrite the code using a for structure.
2. Draw a dense pattern by embedding two for structures.
3. Combine two relational expressions with a logical operator to control the form
 of a pattern.

6-13

Reas_01_001-084.indd Sec2:68Reas_01_001-084.indd Sec2:68 5/23/07 1:20:50 PM5/23/07 1:20:50 PM

