
Conditionals 59

 5 Conditionals
 “ Th at language is an instrument of human reason, and not merely a medium for the expression of thought, is
a truth generally admitted. ”
 —George Boole

 “ Th e way I feel about music is that there is no right and wrong. Only true and false. ”
 —Fiona Apple

 In this chapter:
 – Boolean expressions.
 – Conditional statements: How a program produces different results based on varying circumstances.
 – If, Else If, Else .

 5.1 Boolean Expressions
 What’s your favorite kind of test? Essay format? Multiple choice? In the world of computer
programming, we only take one kind of test: a boolean test—true or false. A boolean expression (named for
mathematician George Boole) is an expression that evaluates to either true or false. Let’s look at some
common language examples:

 • I am hungry. → true
 • I am afraid of computer programming. → false
 • This book is a hilarious read. → false

 In the formal logic of computer science, we test relationships between numbers.

 • 15 is greater than 20 → false
 • 5 equals 5 → true
 • 32 is less than or equal to 33 → true

 In this chapter, we will learn how to use a variable in a boolean expression, allowing our sketch to take
diff erent paths depending on the current value stored in the variable.

 • x � 20 → depends on current value of x
 • y � � 5 → depends on current value of y
 • z � � 33 → depends on current value of z

 Th e following operators can be used in a boolean expression.

 Relational Operators

 � greater than � � less than or equal to
 � less than � � equality
 � � greater than or equal to ! � inequality

60 Learning Processing

 5.2 Conditionals: If, Else, Else If
 Boolean expressions (often referred to as “ conditionals ”) operate within the sketch as questions. Is 15
greater than 20? If the answer is yes (i.e., true), we can choose to execute certain instructions (such as
draw a rectangle); if the answer is no (i.e., false), those instructions are ignored. Th is introduces the idea of
branching; depending on various conditions, the program can follow diff erent paths.

 In the physical world, this might amount to instructions like so:

If I am hungry then eat some food, otherwise if I am thirsty, drink some water, otherwise, take a nap .

 In Processing , we might have something more like:

If the mouse is on the left side of the screen, draw a rectangle on the left side of the screen .

 Or, more formally, with the output shown in Figure 5.1 ,

 if (mouseX < width/2) {
 fill(255);
 rect(0,0,width/2,height);
 }

 Th e boolean expression and resulting instructions in the above source code is
contained within a block of code with the following syntax and structure:

 if (boolean expression) {
 // code to execute if boolean expression is true
 }

 Th e structure can be expanded with the keyword else to include code that is executed if the boolean
expression is false. Th is is the equivalent of “ otherwise, do such and such. ”

 if (boolean expression) {
 // code to execute if boolean expression is true
 } else {
 // code to execute if boolean expression is false
 }

 For example, we could say the following, with the output shown in Figure 5.2 .

If the mouse is on the left side of the screen, draw a white background,
otherwise draw a black background .

 if (mouseX < width/2) {
 background(255);
 } else {
 background(0);
 }

fi g. 5.1

fi g. 5.2

Conditionals 61

 Finally, for testing multiple conditions, we can employ an “ else if. ”
When an else if is used, the conditional statements are evaluated
in the order presented. As soon as one boolean expression is found
to be true, the corresponding code is executed and the remaining
boolean expressions are ignored. See Figure 5.3 .

 if (boolean expression #1) {
 // code to execute if boolean expression #1 is true
 } else if (boolean expression #2) {
 // code to execute if boolean expression #2 is true
 } else if (boolean expression #n) {
 // code to execute if boolean expression #n is true
 } else {
 // code to execute if none of the above
 // boolean expressions are true
 }

 Taking our simple mouse example a step further, we could say the
following, with results shown in Figure 5.4 .

If the mouse is on the left third of the window, draw a white
background, if it is in the middle third, draw a gray background,
otherwise, draw a black background.

 if (mouseX < width/3) {
 background(255);

 } else if (mouseX < 2*width/3) {
 background(127);

 } else {
 background(0);

 }

if (A is true)

else if (B is true)

Do this.
And this.

else if (C is true)

else

Do this.
And this.

Now on to something else....

No Yes

Do this.
And this.

No Yes

Do this.
And this.

No Yes

fi g. 5.3

fi g. 5.4

 float grade = random(0,100);

 if (_______) {

 println("Assign letter grade A. ");

 } else if (________) {

 println (________);

 Exercise 5-1: Consider a grading system where numbers are turned into letters. Fill in the
blanks in the following code to complete the boolean expression.

 In one conditional
statement, you can only
ever have one if and one
 else . However, you can
have as many else if ’s as
you like!

62 Pixels, Patterns, and Processing

 } else if (________) {

 println(________);

 } else if (________) {

 println(________);

 } else {

 println(________);

 }

 Exercise 5-2: Examine the following code samples and determine what will appear in
the message window. Write down your answer and then execute the code in Processing
to compare.

 Problem #1: Determine if a number is between 0 and 25, 26 and 50, or greater than 50.

 int x = 75;

if (x > 50) {

 println(x + " is greater than

 50! ");

} else if (x > 25) {

 println(x + " is greater than

 25! ");

 } else {

 println(x + " is 25 or

 less! ");

}

 int x = 75;

if(x > 25) {

 println(x + " is greater

 than 25! ");

} else if (x > 50) {

 println(x + " is greater

 than 50! ");

} else {

 println(x + " is 25 or

 less! ");

}

 OUTPUT:____________________ OUTPUT:____________________

 Although the syntax is correct, what is problematic about the code in column two above?

Conditionals 63

 It is worth pointing out that in Exercise 5-2 when we test for equality we must use two equal signs. Th is is
because, when programming, asking if something is equal is diff erent from assigning a value to a variable.

if (x = = y) {

 x = y;

 5.3 Conditionals in a Sketch
 Let’s look at a very simple example of a program that performs diff erent tasks based on the result of
certain conditions. Our pseudocode is below.

Step 1. Create variables to hold on to red, green, and blue color components. Call them r , g , and b .
Step 2. Continuously draw the background based on those colors.
Step 3. If the mouse is on the right-hand side of the screen, increment the value of r , if it is on the

left-hand side decrement the value of r .
Step 4. Constrain the value r to be within 0 and 255.

 Th is pseudocode is implemented in Processing in Example 5-1.

 Problem #2: If a number is 5, change it to 6. If a number is 6, change it to fi ve.

 int x = 5;

println("x is now: " + x);

if (x = = 5) {

x = 6;

 }

if (x = = 6) {

 x = 5;

}

 println("x is now: " + x);

 int x = 5;

println("x is now: " + x);

if (x = = 5) {

x = 6;

 } else if (x = = 6) {

 x = 5;

}

 println("x is now: " + x);

 OUTPUT:____________________ OUTPUT:____________________

 Although the syntax is correct, what is problematic about the code in column one above?

“Is x equal to y?” Use double equals!

“Set x equal to y .” Use single equals!

64 Learning Processing

 Example 5-1: Conditionals

 float r = 150;
 float g = 0;
 float b = 0;

 void setup() {
 size(200,200);
 }

 void draw() {
 background(r,g,b);
 stroke(255);
 line(width/2,0,width/2,height);

 if(mouseX > width/2) {
 r = r + 1;
 } else {
 r = r - 1;
 }

 if (r > 255) {
 r = 255;
 } else if (r < 0) {
 r = 0;
 }
 }

 Constraining the value of a variable, as in Step 4, is a common problem. Here, we do not want color
values to increase to unreasonable extremes. In other examples, we might want to constrain the size or
location of a shape so that it does not get too big or too small, or wander off the screen.

 While using if statements is a perfectly valid solution to the constrain problem, Processing does off er a
function entitled constrain() that will get us the same result in one line of code.

 if (r > 255) {
 r = 255;

 } else if (r < 0) {
 r = 0;

 }

 r = constrain(r,0,255);

constrain() takes three arguments: the value we intend to constrain, the minimum limit, and the
maximum limit. Th e function returns the “ constrained ” value and is assigned back to the variable r.
(Remember what it means for a function to return a value? See our discussion of random() .)

fi g. 5.5

3. “If the mouse is on the right side of
the screen” is equivalent to “if mouseX
is greater than width divided by 2.”

4. If r is greater than 255, set it to 255.
If r is less than 0, set it to 0.

1. Variables.

Constrain with the constrain() function.

Constrain with an “if” statement.

2. Draw stuff.

Conditionals 65

 Getting into the habit of constraining values is a great way to avoid errors; no matter how sure you are
that your variables will stay within a given range, there are no guarantees other than constrain() itself.
And someday, as you work on larger software projects with multiple programmers, functions such as
constrain() can ensure that sections of code work well together. Handling errors before they happen in
code is emblematic of good style.

 Let’s make our fi rst example a bit more advanced and change all three color components according to
the mouse location and click state. Note the use of constrain() for all three variables. Th e system variable
mousePressed is true or false depending on whether the user is holding down the mouse button.

 Example 5-2: More conditionals

 float r = 0;
 float b = 0;
 float g = 0;

 void setup() {
 size(200,200);
 }

 void draw() {
 background(r,g,b);
 stroke(0);

 line(width/2,0,width/2,height);
 line(0,height/2,width,height/2);

 if(mouseX > width/2) {
 r = r + 1;
 } else {
 r = r - 1;
 }

 if (mouseY > height/2) {
 b = b + 1;
 } else {
 b = b - 1;
 }

 if (mousePressed) {
 g = g + 1;
 } else {
 g = g - 1;
 }

 r = constrain(r,0,255);
 g = constrain(g,0,255);
 b = constrain(b,0,255);
 }

fi g. 5.6

Three variables for the background color.

Color the background and draw lines to
divide the window into quadrants.

If the mouse is on the right-hand side of
the window, increase red. Otherwise, it is
on the left-hand side and decrease red.

If the mouse is on the bottom of the
window, increase blue. Otherwise, it
is on the top and decrease blue.

If the mouse is pressed (using the system
variable mousePressed) increase green.

Constrain all color values to between
0 and 255.

66 Learning Processing

 Exercise 5-3: Move a rectangle across a window by incrementing a variable. Start the shape
at x coordinate 0 and use an if statement to have it stop at coordinate 100. Rewrite the
sketch to use constrain() instead of the if statement. Fill in the missing code.

 // Rectangle starts at location x

 float x = 0;

 void setup() {

 size(200,200);

 }

 void draw() {

 background(255);

 // Display object

 fill(0);

 rect(x,100,20,20);

 // Increment x

 x = x + 1;

 __

 __

 __

 }

 5.4 Logical Operators
 We have conquered the simple if statement:

 If my temperature is greater than 98.6, then take me to see the doctor .

 Sometimes, however, simply performing a task based on one condition is not enough. For example:

 If my temperature is greater than 98.6 OR I have a rash on my arm, take me to see the doctor .

 If I am stung by a bee AND I am allergic to bees, take me to see the doctor .

 We will commonly want to do the same thing in programming from time to time.

 If the mouse is on the right side of the screen AND the mouse is on the bottom of the screen, draw a rectangle
in the bottom right corner .

Conditionals 67

 Our fi rst instinct might be to write the above code using a nested if statement, like so:

 if (mouseX > width/2) {
 if (mouseY > height/2) {

 fill(255);
 rect(width/2,height/2,width/2,height/2);

 }
 }

 In other words, we would have to bypass two if statements before we can
reach the code we want to execute. Th is works, yes, but can be accomplished
in a simpler way using what we will call a “ logical and, ” written as two
ampersands (“ & & ”). A single ampersand (“ & ”) means something else 1 in
Processing so make sure you include two!

1 “ & ” or “ | ” are reserved for bitwise operations in Processing. A bitwise operation compares each bit (0 or 1) of the binary
representations of two numbers. It is used in rare circumstances where you require low-level access to bits.

 || (logical OR)
 & & (logical AND)
 ! (logical NOT)

 A “ logical or ” is two vertical bars (AKA two “ pipes ”) “ || ” . If you can’t fi nd the pipe, it is typically on the
keyboard as shift-backslash.

 if (mouseX > width/2 & & mouseY > height/2) {
 fill(255);
 rect(width/2,height/2,width/2,height/2);

 }

 In addition to & & and ||, we also have access to the logical operator “ not, ” written as an exclamation
point: !

If my temperature is NOT greater than 98.6, I won’t call in sick to work.

If I am stung by a bee AND I am NOT allergic to bees, do not worry!

 A Processing example is:

If the mouse is NOT pressed, draw a circle, otherwise draw a square .

 if (!mousePressed) {
 ellipse(width/2,height/2,100,100);

 } else {
 rect(width/2,height/2,100,100);

 }

 Notice this example could also be written omitting the not , saying:

If the mouse is pressed, draw a square, otherwise draw a circle .

! means not. “mousePressed” is a boolean
variable that acts as its own boolean expression.
Its value is either true or false (depending on
whether or not the mouse is currently pressed).
Boolean variables will be explored in greater
detail in Section 5.6.

If the mouse is on the right side and on
the bottom.

68 Learning Processing

 Exercise 5-4: Are the following boolean expressions true or false? Assume variables
x � 5 and y � 6.

 !(x > 6) _______ ______________________________

 (x = = 6 & & x = = 5)_____________________________________

 (x = = 6 || x = = 5)_____________________________________

 (x > -1 & & y < 10)_______ _______________________________

 Although the syntax is correct, what is fl awed about the following boolean expression?

 (x > 10 & & x < 5) ________________________________

 Exercise 5-5: Write a program that implements a simple rollover. In other words, if the

mouse is over a rectangle, the rectangle changes color. Here is some code to get you started.

 int x = 50;

 int y = 50;

 int w = 100;

 int h = 75;

 void setup() {

 size(200,200);

 }

 void draw() {

 background(0);

 stroke(255);

 if (_______ & & _______ & & _______ & & _______) {

 } _______ {

 }

 rect(x,y,w,h);

 }

