
Arrays 141

 9 Arrays
 “ I might repeat to myself slowly and soothingly, a list of quotations beautiful
from minds profound—if I can remember any of the damn things. ”
 — Dorothy Parker

In this chapter:
 – What is an array?
 – Declaring an array.
 – Initialization.
 – Array operations—using the “ for ” loop with an array.
 – Arrays of objects.

 9.1 Arrays, why do we care?
 Let’s take a moment to revisit the car example from the previous chapter on object-oriented
programming. You may remember we spent a great deal of eff ort on developing a program that contained
multiple instances of a class, that is, two objects.

 Car myCar1;
 Car myCar2;

 Th is was indeed an exciting moment in the development of our lives as computer programmers. It is
likely you are contemplating a somewhat obvious question. How could I take this further and write a
program with 100 car objects? With some clever copying and pasting, you might write a program with
the following beginning:

 Car myCar1
 Car myCar2
 Car myCar3
 Car myCar4
 Car myCar5
 Car myCar6
 Car myCar7
 Car myCar8
 Car myCar9
 Car myCar10
 Car myCar11
 Car myCar12
 Car myCar13
 Car myCar14
 Car myCar15
 Car myCar16
 Car myCar17
 Car myCar18
 Car myCar19
 Car myCar20
 Car myCar21

142 Learning Processing

 Car myCar22
 Car myCar23
 Car myCar24
 Car myCar25
 Car myCar26
 Car myCar27
 Car myCar28
 Car myCar29
 Car myCar30
 Car myCar31
 Car myCar32
 Car myCar33
 Car myCar34
 Car myCar35
 Car myCar36
 Car myCar37
 Car myCar38
 Car myCar39
 Car myCar40
 Car myCar41
 Car myCar42
 Car myCar43
 Car myCar44
 Car myCar45
 Car myCar46
 Car myCar47
 Car myCar48
 Car myCar49
 Car myCar50
 Car myCar51
 Car myCar52
 Car myCar53
 Car myCar54
 Car myCar55
 Car myCar56
 Car myCar57
 Car myCar58
 Car myCar59
 Car myCar60
 Car myCar61
 Car myCar62
 Car myCar63
 Car myCar64
 Car myCar65
 Car myCar66
 Car myCar67
 Car myCar68
 Car myCar69
 Car myCar70
 Car myCar71
 Car myCar72
 Car myCar73
 Car myCar74
 Car myCar75
 Car myCar76
 Car myCar77
 Car myCar78
 Car myCar79

Arrays 143

 Car myCar80
 Car myCar81
 Car myCar82
 Car myCar83
 Car myCar84
 Car myCar85
 Car myCar86
 Car myCar87
 Car myCar88
 Car myCar89
 Car myCar90
 Car myCar91
 Car myCar92
 Car myCar93
 Car myCar94
 Car myCar95
 Car myCar96
 Car myCar97
 Car myCar98
 Car myCar99
 Car myCar100

 If you really want to give yourself a headache, try completing the rest of the program modeled after the
above start. It will not be a pleasant endeavor. I am certainly not about to leave you any workbook space
in this book to practice.

 An array will allow us to take these 100 lines of code and put them into one line. Instead of having
100 variables, an array is one thing that contains a list of variables.

 Any time a program requires multiple instances of similar data, it might be time to use an array. For
example, an array can be used to store the scores of four players in a game, a selection of 10 colors in a
design program, or a list of fi sh objects in an aquarium simulation.

 Exercise 9-1: Looking at all of the sketches you have created so far, do any merit the use of an
array? Why?

144 Learning Processing

 9.2 What is an array?
 From Chapter 4, you may recall that a variable is a named pointer to a location in memory where data is
stored. In other words, variables allow programs to keep track of information over a period of time. An
array is exactly the same, only instead of pointing to one singular piece of information, an array points to
multiple pieces. See Figure 9.1 .

 You can think of an array as a list of variables. A list, it should be noted, is useful for two important
reasons. Number one, the list keeps track of the elements in the list themselves. Number two, the list
keeps track of the order of those elements (which element is the fi rst in the list, the second, the third,
etc.). Th is is a crucial point since in many programs, the order of information is just as important as the
information itself.

 In an array, each element of the list has a unique index, an integer value that designates its position in the
list (element #1, element #2, etc.). In all cases, the name of the array refers to the list as a whole, while
each element is accessed via its position.

 Notice how in Figure 9.2 , the indices range from 0 to 9. Th e array has a total of 10 elements, but the fi rst
element number is 0 and the last element is 9. We might be tempted to stomp our feet and complain:
 “ Hey, why aren’t the elements numbered from 1 to 10? Wouldn’t that be easier? ”

7

Variable

4 8 15 16 23 42

Array

fi g. 9.1

0

Array index values

1 2 3 4 5 6 7 8 9
fi g. 9.2

 While at fi rst, it might intuitively seem like we should start counting at one (and some programming
languages do), we start at zero because technically the fi rst element of the array is located at the start of
the array, a distance of zero from the beginning. Numbering the elements starting at 0 also makes many
 array operations (the process of executing a line of code for every element of the list) a great deal more
convenient. As we continue through several examples, you will begin to believe in the power of counting
from zero.

Arrays 145

int[] arrayOfInts = new int [42];

The "new" operator
means we're making a

"new" array.

Array declaration and creation

Type
Size of
array

fi g. 9.4

int [] arrayOfInts;

Type
Name

Indicates
array

fi g. 9.3

 9.3 Declaring and Creating an Array
 In Chapter 4, we learned that all variables must have a name and a data type. Arrays are no diff erent.
Th e declaration statement, however, does look diff erent. We denote the use of an array by placing empty
square brackets (“ [] ”) after the type declaration. Let’s start with an array of primitive values, for example,
integers. (We can have arrays of any data type, and we will soon see how we can make an array of
objects.) See Figure 9.3 .

 Th e declaration in Figure 9.3 indicates that “ arrayOf Ints ” will store a list of integers. Th e array name
 “ arrayOfInts ” can be absolutely anything you want it to be (we only include the word “ array ” here to
illustrate what we are learning).

 One fundamental property of arrays, however, is that they are of fi xed size. Once we defi ne the size for an
array, it can never change. A list of 10 integers can never go to 11 . But where in the above code is the size
of the array defi ned? It is not. Th e code simply declares the array; we must also make sure we create the
actual instance of the array with a specifi ed size.

 To do this, we use the new operator, in a similar manner as we did in calling the constructor of an object.
In the object’s case, we are saying “ Make a new Car ” or “ Make a new Zoog. ” With an array, we are saying
 “ Make a new array of integers, ” or “ Make a new array of Car objects, ” and so on. See array declaration in
 Figure 9.4 .

 Th e array declaration in Figure 9.4 allows us to specify the array size: how many elements we want the
array to hold (or, technically, how much memory in the computer we are asking for to store our beloved
data). We write this statement as follows: the new operator, followed by the data type, followed by the
size of the array enclosed in brackets. Th is size must be an integer. It can be a hard-coded number, a
variable (of type integer), or an expression that evaluates to an integer (like 2 � 2).

 Exercise 9-2: If you have an array with 1,000 elements, what is the range of index values
for that array?

 Answer: _______ through _______

146 Learning Processing

 Example 9-1: Additional array declaration and creation examples

 float[] scores = new float[4]; // A list of 4 floating point numbers

 Human[] people = new Human[100]; // A list of 100 Human objects

 int num = 50;

 Car[] cars = new Car[num]; // Using a variable to specify size

 Spaceship[] ships = new Shapeship[num*2 + 3]; // Using an expression to
 specify size

 Exercise 9-3: Write the declaration statements for the following arrays:

 30 integers

 100 fl oating point numbers

 56 Zoog objects

 Exercise 9-4: Which of the following array declarations are valid and which are invalid
(and why)?

 int[] numbers = new int[10];

 float[] numbers = new float[5 + 6];

 int num = 5;

 float[] numbers = new int[num];

 float num = 5.2;

 Car[] cars = new Car[num];

 int num = (5 * 6)/2;

 float[] numbers = new
float[num = 5];

 int num = 5;

 Zoog[] zoogs = new Zoog[num * 10];

 Th ings are looking up. Not only did we successfully declare the existence of an array, but we have given
it a size and allocated physical memory for the stored data. A major piece is missing, however: the data
stored in the array itself !

Arrays 147

 9.4 Initializing an Array
 One way to fi ll an array is to hard-code the values stored in each spot of the array.

 Example 9-2: Initializing the elements of an array one at a time

 int[] stuff = new int[3];

 stuff [0] = 8; // The first element of the array equals 8
 stuff [1] = 3; // The second element of the array equals 3
 stuff [2] = 1; // The third element of the array equals 1

 As you can see, we refer to each element of the array individually by specifying an index, starting at 0.
Th e syntax for this is the name of the array, followed by the index value enclosed in brackets.

 arrayName[INDEX]

 A second option for initializing an array is to manually type out a list of values enclosed in curly braces
and separated by commas.

 Example 9-3: Initializing the elements of an array all at once

 int[] arrayOfInts = { 1, 5, 8, 9, 4, 5 };
 float[] floatArray = { 1.2, 3.5, 2.0, 3.4123, 9.9 };

 Both of these approaches are not commonly used and you will not see them in most of the examples
throughout the book. In fact, neither initialization method has really solved the problem posed at the
beginning of the chapter. Imagine initializing each element individually with a list of 100 or (gasp)
1,000 or (gasp gasp!) 1,000,000 elements.

 Th e solution to all of our woes involves a means for iterating through the elements of the array. Ding ding
ding. Hopefully a loud bell is ringing in your head. Loops! (If you are lost, revisit Chapter 6.)

 Exercise 9-5: Declare an array of three Zoog objects. Initialize each spot in the array with a
Zoog object via its index.

 Zoog__ zoogs = new _______ [_______];

 _______[_______] = _______ _______(100, 100, 50, 60, 16);

 _______[_______] = _______ _______(________________);

 _______[_______] = _______ _______(________________);

148 Learning Processing

 9.5 Array Operations
 Consider, for a moment, the following problem:

 (A) Create an array of 1,000 fl oating point numbers. (B) Initialize every element of that array with a
random number between 0 and 10.

 Part A we already know how to do.

 float[] values = new float[1000];

 What we want to avoid is having to do this for Part B:

 values[0] = random(0,10);
 values[1] = random(0,10);
 values[2] = random(0,10);
 values[3] = random(0,10);
 values[4] = random(0,10);
 values[5] = random(0,10);
 etc. etc.

 Let’s describe in English what we want to program:

 For every number n from 0 to 99, initialize the n th element stored in array as a random value
between 0 and 10. Translating into code, we have:

 int n = 0;
 values[n] = random(0,10);
 values[n + 1] = random(0,10);
 values[n + 2] = random(0,10);
 values[n + 3] = random(0,10);
 values[n + 4] = random(0,10);
 values[n + 5] = random(0,10);

 Unfortunately, the situation has not improved. We have, nonetheless, taken a big leap forward. By using
a variable (n) to describe an index in the array, we can now employ a while loop to initialize every n
element.

 Example 9-4: Using a while loop to initialize all elements of an array

 int n = 0;
 while (n < 1000) {
 values[n] = random(0,10);
 n = n + 1;
 }

 A for loop allows us to be even more concise, as Example 9-5 shows.

Arrays 149

 Example 9-5: Using a for loop to initialize all elements of an array

 for (int n = 0; n < 1000; n + +) {
 values[n] = random(0,10);

 }

 What was once 1,000 lines of code is now three!

 We can exploit the same technique for any type of array operation we might like to do beyond simply
initializing the elements. For example, we could take the array and double the value of each element
(we will use i from now on instead of n as it is more commonly used by programmers).

 Example 9-6: An array operation

 for (int i = 0; i < 1000; i + +) {
 values[i] = values[i] * 2;

 }

 Th ere is one problem with Example 9-6: the use of the hard-coded value 1,000. Striving to be better
programmers, we should always question the existence of a hard-coded number. In this case, what if
we wanted to change the array to have 2,000 elements? If our program was very long with many array
operations, we would have to make this change everywhere throughout our code. Fortunately for us,
 Processing gives us a nice means for accessing the size of an array dynamically, using the dot syntax we
learned for objects in Chapter 8. length is a property of every array and we can access it by saying:

 arrayName dot length

 Let’s use length while clearing an array. Th is will involve resetting every value to 0.

 Example 9-7: An array operation using dot length

 for (int i = 0; i < values.length; i + +) {

 values[i] = 0;
 }

 Exercise 9-6: Assuming an array of 10 integers, that is,

 int[] nums = { 5,4,2,7,6,8,5,2,8,14};

 write code to perform the following array operations (Note that the number of clues vary,
just because a [____] is not explicitly written in does not mean there should not be brackets).

 Square each number for (int i ___; i < _____; i + +) {

 (i.e., multiply each ____[i] = ______*_____;

 by itself) }

150 Learning Processing

 9.6 Simple Array Example: The Snake
 A seemingly trivial task, programming a trail following the mouse, is not as easy as it might initially
appear. Th e solution requires an array, which will serve to store the history of mouse locations. We will use
two arrays, one to store horizontal mouse locations, and one for vertical. Let’s say, arbitrarily, that we want
to store the last 50 mouse locations.

 First, we declare the two arrays.

 int[] xpos = new int[50];

 int[] ypos = new int[50];

 Second, in setup() , we must initialize the arrays. Since at the start of the program there has not been any
mouse movement, we will just fi ll the arrays with 0’s.

 for (int i = 0; i < xpos.length; i + +) {
 xpos[i] = 0;
 ypos[i] = 0;
 }

 Each time through the main draw() loop, we want to update the array with the current mouse location.
Let’s choose to put the current mouse location in the last spot of the array. Th e length of the array is 50,
meaning index values range from 0–49. Th e the last spot is index 49, or the length of the array minus one.

 xpos[xpos.length–l] = mouseX;
 ypos[ypos.length–1] = mouseY;

 Add a random

 number between

 zero and 10 to each

 number.

 _____ + = int(________);

 __

 Add to each number

 the number that

 follows in the array.

 Skip the last value

 in the array.

 for (int i = 0; i < _____; i + +) {

 _____ + = ______ [____];

 }

 Calculate the sum of

 all the numbers.

 _____ ________ = ____;

 for (int i = 0; i < nums.length; i + +)

 {

 ______ + = ________;

 }

The last spot in an array is length minus one.

Arrays 151

 Now comes the hard part. We want to keep only the last 50 mouse locations. By storing the current
mouse location at the end of the array, we are overwriting what was previously stored there. If the mouse
is at (10,10) during one frame and (15,15) during another, we want to put (10,10) in the second to last
spot and (15,15) in the last spot. Th e solution is to shift all of the elements of the array down one spot
before updating the current location. Th is is shown in Figure 9.5 .

1 moves
into 0

Spot 0
is overwritten

New value goes
into 3

New value

2 moves
into 1

3 moves
into 2

5 42913

13 8429

fi g. 9.5

 Element index 49 moves into spot 48, 48 moves into spot 47, 47 into 46, and so on. We can do this by
looping through the array and setting each element index i to the value of element i plus one. Note we
must stop at the second to last value since for element 49 there is no element 50 (49 plus 1). In other
words, instead of having an exit condition

 i � xpos.length;

 we must instead say:

 i � xpos.length – 1;

 Th e full code for performing this array shift is as follows:

 for (int i = 0; i < xpos.length–1; i + +) {
 xpos[i] = xpos[i + 1];
 ypos[i] = ypos[i + 1];

 }

 Finally, we can use the history of mouse locations to draw a series of circles. For each element of the xpos
array and ypos array, draw an ellipse at the corresponding values stored in the array.

 for (int i = 0; i < xpos.length; i + +) {
 noStroke();
 fill(255);
 ellipse(xpos[i],ypos[i],32,32);

 }

 Making this a bit fancier, we might choose to link the brightness of the circle as well as the size of the
circle to the location in the array, that is, the earlier (and therefore older) values will be bright and small
and the later (newer) values will be darker and bigger. Th is is accomplished by using the counting variable
 i to evaluate color and size.

152 Learning Processing

 for (int i = 0; i < xpos.length; i + +) {
 noStroke();

 fill(255 – i*5);
 ellipse(xpos[i],ypos[i],i,i);

 }

 Putting all of the code together, we have the following example, with the output shown in Figure 9.6 .

 Example 9-8: A snake following the mouse

 // x and y positions
 int[] xpos = new int[50];
 int[] ypos = new int[50];

 void setup() {
 size(200,200);
 smooth();

 // Initialize
 for (int i = 0; i < + +)

 xpos[i] = 0;
 ypos[i] = 0;
 }
 }

 void draw() {
 background(255);

 // Shift array values
 for (int i = 0; i < xpos.length-1; i + +) {
 xpos [i] = xpos[i + 1];
 ypos[i] = ypos[i + 1];

 }

 // New location
 xpos[xpos.length–1] = mouseX;
 ypos[ypos.length–1] = mouseY;

 // Draw everything
 for (int i = 0; i < xpos.length; i + +) {
 noStroke();
 fill(255-i*5);
 ellipse(xpos[i],ypos[i],i,i);
 }

 }

fi g. 9.6

Declare two arrays with 50 elemets.

Initialize all elements of each array to zero.

Shift all elements down one spot.
xpos[0] = xpos[1], xpos[1] = xpos = [2], and so on.
Stop at the second to last element.

Update the last spot in the array with the
mouse location.

Draw an ellipse for each element in the arrays.
Color and size are tied to the loop’s counter: i.

xpos.length; i

Arrays 153

 Exercise 9-7: Rewrite the snake example in an object-oriented fashion with a Snake class.
Can you make snakes with slightly diff erent looks (diff erent shapes, colors, sizes)? (For an
advanced problem, create a Point class that stores an x and y coordinate as part of the sketch.
Each snake object will have an array of Point objects, instead of two separate arrays of x and
y values. Th is involves arrays of objects, covered in the next section.)

 9.7 Arrays of Objects
 I know, I know. I still have not fully answered the question. How can we write a program with 100 car
objects?

 One of the nicest features of combining object-oriented programming with arrays is the simplicity of
transitioning a program from one object to 10 objects to 10,000 objects. In fact, if we have been careful,
we will not have to change the Car class whatsoever. A class does not care how many objects are made
from it. So, assuming we keep the identical Car class code, let’s look at how we expand the main program
to use an array of objects instead of just one.

 Let’s revisit the main program for one Car object.

 Car myCar;

 void setup() {
 myCar = new Car(color(255,0,0),0,100,2);

 }

 void draw() {
 background(255);

 myCar.move();
 myCar.display();
 }

 Th ere are three steps in the above code and we need to alter each one to account for an array.

 BEFORE AFTER

 Declare the Car
 Car myCar;

 Declare the Car Array
 Car[] cars = new Car[100];

 Initialize the Car
 myCar = new Car(color(255),0,100,2);

 Initialize each element of the Car Array
 for (int i = 0; i < cars.length; i + +) {
 cars[i] = new Car(color(i*2),0,i*2,i);

 }

 Run the Car by Calling Methods
 myCar.move();
 myCar.display();

 Run each element of the Car Array
 for (int i = 0; i < cars.length; i + +) {
 cars[i].move();
 cars[i].display();

 }

154 Learning Processing

 Th is leaves us with Example 9–9 . Note how changing the number of cars present in the program requires
only altering the array defi nition. Nothing else anywhere has to change!

 Example 9-9: An array of Car objects

Car[] cars = new Car[100] ;

 void setup() {
 size(200,200);
 smooth();

 for (int i = 0; i < cars.length; i + +) {
 cars[i] = new Car(color(i*2),0,i*2,i/20.0);

 }
 }

 void draw() {
 background(255);
 for (int i = 0; i < cars.length; i + +) {
 cars[i].move();
 cars[i].display();

 }

 }

 class Car {
 color c;
 float xpos;
 float ypos;
 float xspeed;

 Car(color c_, float xpos_, float ypos_, float xspeed_) {
 c = c_;
 xpos = xpos_;
 ypos = ypos_;

 xspeed = xspeed_;
 }

 void display() {
 rectMode(CENTER);
 stroke(0);
 fill(c);
 rect(xpos,ypos,20,10);

 }

 void move() {
 xpos = xpos + xspeed;
 if (xpos > width) {
 xpos = 0;

 }
 }

 }

fi g. 9.7

An array of 100 Car objects!

The Car class does not change
whether we are making one
car, 100 cars or 1,000 cars!

Initialize each Car using a for loop.

Run each Car using a for loop.

Arrays 155

 9.8 Interactive Objects

 When we fi rst learned about variables (Chapter 4) and conditionals (Chapter 5), we programmed a
simple rollover eff ect. A rectangle appears in the window and is one color when the mouse is on top and
another color when the mouse is not. Th e following is an example that takes this simple idea and puts it
into a “ Stripe ” object. Even though there are 10 stripes, each one individually responds to the mouse by
having its own rollover() function.

 void rollover(int mx, int my) {
 if (mx > x & & mx < x + w) {
 mouse = true;

 } else {
 mouse = false;
 }

 }

 Th is function checks to see if a point (mx , my) is contained within the vertical stripe. Is it greater than
the left edge and less than the right edge? If so, a boolean variable “ mouse ” is set to true. When designing
your classes, it is often convenient to use a boolean variable to keep track of properties of an object that
resemble a switch. For example, a Car object could be running or not running. Zoog could be happy or
not happy.

 Th is boolean variable is used in a conditional statement inside of the Stripe object’s display() function to
determine the Stripe’s color.

 void display() {
 if (mouse) {

 fill(255);
 } else {
 fill(255,100);

 }
 noStroke();
 rect(x,0,w,height);

 }

 When we call the rollover() function on that object, we can then pass in mouseX and mouseY as
arguments.

 stripes[i].rollover(mouseX,mouseY);

 Even though we could have accessed mouseX and mouseY directly inside of the rollover () function, it is
better to use arguments. Th is allows for greater fl exibility. Th e Stripe object can check and determine if
any x , y coordinate is contained within its rectangle. Perhaps later, we will want the Stripe to turn white
when another object, rather than the mouse, is over it.

 Here is the full “ interactive stripes ” example.

156 Learning Processing

 Example 9-10: Interactive stripes

 // An array of stripes
 Stripe[] stripes = new Stripe[10];

 void setup() {
 size(200,200);

 // Initialize all " stripes "
 for (int i = 0; i < stripes.length; i + +) {
 stripes[i] = new Stripe();

 }
 }

 void draw() {
 background(100);
 // Move and display all " stripes "
 for (int i = 0; i < stripes.length; i + +) {
 // Check if mouse is over the Stripe

 stripes[i].rollover(mouseX,mouseY);
 stripes[i].move();
 stripes[i].display();
 }
 }

 class Stripe {
 float x; // horizontal location of stripe

 float speed; // speed of stripe
 float w; // width of stripe
 boolean mouse; // state of stripe (mouse is over or not?)

 Stripe() {
 x = 0; // All stripes start at 0
 speed = random(1); // All stripes have a random positive speed
 w = random(10,30);
 mouse = false;

 }

 // Draw stripe
 void display() {
 if (mouse) {
 fill(255);

 } else {
 fill(255,100);

 }
 noStroke();
 rect(x,0,w,height);

 }

 // Move stripe

 void move() {
 x + = speed;
 if (x > width + 20) x = – 20;

 }

fi g. 9.8

Passing the mouse coordinates
into an object.

A boolean variable
keeps track of the
object’s state.

Boolean variable determines
Stripe color.

Arrays 157

 // Check if point is inside of Stripe
 void rollover(int mx, int my) {
 // Left edge is x, Right edge is x + w
 if (mx > x & & mx < x + w) {
 mouse = true;

 } else {
 mouse = false;

 }
 }

 }

Check to see if point (mx,my) is
inside the Stripe.

 Exercise 9-8: Write a Button class (see Example 5-5 for a non-object-oriented button). Th e button
class should register when a mouse is pressed over the button and change color. Create button objects
of diff erent sizes and locations using an array. Before writing the main program, sketch out the
Button class. Assume the button is off when it fi rst appears. Here is a code framework:

 class Button {

 float x;

 float y;

 float w;

 float h;

 boolean on;

 Button(float tempX, float tempY, float tempW, float tempH) {

 x = tempX;

 y = tempY;

 w = tempW;

 h = tempH;

 on = __________;

 }

158 Learning Processing

 9.9 Processing’s Array Functions
 OK, so I have a confession to make. I lied. Well, sort of. See, earlier in this chapter, I made a very big
point of emphasizing that once you set the size of an array, you can never change that size. Once you have
made 10 Button objects, you can’t make an 11th.

 And I stand by those statements. Technically speaking, when you allocate 10 spots in an array, you have
told Processing exactly how much space in memory you intend to use. You can’t expect that block of
memory to happen to have more space next to it so that you can expand the size of your array.

 However, there is no reason why you couldn’t just make a new array (one that has 11 spots in it), copy the
fi rst 10 from your original array, and pop a new Button object in the last spot. Processing , in fact, off ers
a set of array functions that manipulate the size of an array by managing this process for you. Th ey are:
 shorten(), concat(), subset(), append(), splice(), and expand() . In addition, there are functions for changing
the order in an array, such as sort() and reverse() .

 Details about all of these functions can be found in the reference. Let’s look at one example that uses
 append() to expand the size of an array. Th is example (which includes an answer to Exercise 8-5) starts
with an array of one object. Each time the mouse is pressed, a new object is created and appended to the
end of the original array .

 Example 9-11: Resizing an array using append()

 Ball[] balls = new Ball[1];
 float gravity = 0.1;

 void setup() {
 size(200,200);

 smooth();
 frameRate(30);
 // Initialize ball index 0
 balls[0] = new Ball(50,0,16);
 }

 void draw() {
 background(100);
 // Update and display all balls
 for (int i = 0; i < balls.length; i + +) {

fi g. 9.9

 }

We start with an array
with just one element.

Whatever the length of
that array, update and
display all of the objects.

Arrays 159

 balls[i].gravity();
 balls[i].move();
 balls[i].display();
 }

 }

 void mousePressed() {
 // A new ball object
 Ball b = new Ball(mouseX,mouseY,10);

 // Append to array
 balls = (Ball[]) append(balls,b);

 }

 class Ball {
 float x;
 float y;
 float speed;
 float w;

 x = tempX;

 y = tempY;
 w = tempW;
 speed = 0;
 }

 void gravity() {
 // Add gravity to speed
 speed = speed + gravity;
 }

 void move() {
 // Add speed to y location
 y = y + speed;
 // If square reaches the bottom

 // Reverse speed
 if (y > height) {

 speed = speed * –0.95;
 y = height;
 }
 }

 void display() {
 // Display the circle
 fill(255);
 noStroke();
 ellipse(x,y,w,w);
 }
 }

 Another means of having a resizable array is through the use of a special object known as an ArrayList ,
which will be covered in Chapter 23.

Make a new object at the mouse location.

Here, the function, append() adds an element to the
end of the array. append() takes two arguments.
The fi rst is the array you want to append to, and the
second is the thing you want to append.
You have to reassign the result of the append()
function to the original array. In addition, the append()
function requires that you explicitly state the type of
data in the array again by putting the array data type
in parentheses: “(Ball[])”. This is known as casting.

Ball(float tempX, float tempY, float tempW) {

 9.10 One Thousand and One Zoogs

 It is time to complete Zoog’s journey and look at how we move from one Zoog object to many. In the
same way that we generated the Car array or Stripe array example, we can simply copy the exact Zoog
class created in Example 8-3 and implement an array .

 Example 9-12: 200 Zoog objects in an array

 Zoog[] zoogies = new Zoog[200];

 void setup() {
 size(400,400);

 smooth();
 for (int i = 0; i < zoogies.length; i + +) {
 zoogies[i] = new Zoog(random(width),random(height),30,30,8);
 }
 }

 void draw() {
 background(255); // Draw a black background
 for (int i = 0; i < zoogies.length; i + +) {
 zoogies[i].display();
 zoogies[i].jiggle();
 }
 }

 class Zoog {
 // Zoog's variables
 float x,y,w,h,eyeSize;

 // Zoog constructor
 Zoog(float tempX, float tempY, float tempW, float tempH, float tempEyeSize) {
 x = tempX;

 y = tempY;
 w = tempW;

 h = tempH;
 eyeSize = tempEyeSize;
 }

 // Move Zoog
 void jiggle() {
 // Change the location

 x = x + random(–1,1);
 y = y + random(–1,1);

 // Constrain Zoog to window
 x = constrain(x,0,width);

 y = constrain(y,0,height);
 }

 // Display Zoog
 void display() {

 // Set ellipses and rects to CENTER mode
 ellipseMode(CENTER);
 rectMode(CENTER);

fi g. 9.10

The only difference between this example
and the previous chapter (Example 8-3) is
the use of an array for multiple Zoog objects.

For simplicity we have also removed the
“speed” argument from the jiggle() function.
Try adding it back in as an exercise.

160 Learning Processing

Arrays 161

 // Draw Zoog's arms with a for loop
 for (float i = y-h/3; i < y + h/2; i + = 10) {
 stroke(0);
 line(x–w/4,i,x + w/4,i);
 }

 // Draw Zoog's body
 stroke(0);
 fill(175);
 rect(x,y,w/6,h);

 // Draw Zoog's head
 stroke(0);
 fill(255);
 ellipse(x,y-h,w,h);

 // Draw Zoog's eyes
 fill(0);
 ellipse(x–w/3,y–h,eyeSize,eyeSize*2);
 ellipse(x + w/3,y–h,eyeSize,eyeSize*2);

 // Draw Zoog's legs
 stroke(0);
 line(x–w/12,y + h/2,x-w/4,y + h/2 + 10);
 line(x + w/12,y + h/2,x + w/4,y + h/2 + 10);

 }
 }

Lesson Four Project
Step 1. Take the Class you made in Lesson Th ree and make an array of objects

from that class.

Step 2. Can you make the objects react to the mouse? Try using the dist()
function to determine the object’s proximity to the mouse. For example,
could you make each object jiggle more the closer it is to the mouse?

 How many objects can you make before the sketch runs too slow?

 Use the space provided below to sketch designs, notes, and pseudocode for your
project.

162 Learning Processing

