
37

Data 1: Variables
This unit introduces different types of data and explains how to create variables and
assign them values.

Syntax introduced:
int, float, boolean, true, false, = (assign), width, height

What is data? Data often consists of measurements of physical characteristics. For
example, Casey’s California driver’s license states his sex is M, his hair is BRN, and his
eyes are HZL. The values M, BRN, and HZL are items of data associated with Casey. Data
can be the population of a country, the average annual rainfall in Los Angeles, or your
current heart rate. In software, data is stored as numbers and characters. Examples
of digital data include a photograph of a friend stored on your hard drive, a song
downloaded from the Internet, and a news article loaded through a web browser. Less
obvious is the data continually created and exchanged between computers and other
devices. For example, computers are continually receiving data from the mouse and
keyboard. When writing a program, you might create a data element to save the location
of a shape, to store a color for later use, or to continuously measure changes in cursor
position.

Data types

Processing can store and modify many different kinds of data, including numbers,
letters, words, colors, images, fonts, and boolean values (true, false). The computer
stores each in a different way, so it has to know which type of data is being used to know
how to manage it. For example, storing a word takes more room than storing one letter;
therefore, storing the word Cincinnati requires more space than storing the letter C. If
space has been allocated for only one letter, trying to store a word in the same space will
cause an error. Every data element is represented as sequences of bits (0s and 1s) in the
computer’s memory (more information about bits is found in Appendix D, p. 669). For
example, 01000001 can be interpreted as the letter A, and it can also be interpreted as
the number 65. It’s necessary to specify the type of data so the computer knows how to
correctly interpret the bits.
 Numeric data is the fi rst type of data encountered in the following sections of this
book. There are two types of numeric data used in Processing: integer and fl oating-
point. Integers are whole numbers such as 12, -120, 8, and 934. Processing represents
integer data with the int data type. Floating-point numbers have a decimal point for
creating fractions of whole numbers such as 12.8, -120.75, 8.125, and 934.82736. Processing
represents fl oating-point data with the float data type. Floating-point numbers are
often used to approximate analog or continuous values because they have decimal

Reas_01_001-084.indd Sec2:37Reas_01_001-084.indd Sec2:37 5/23/07 1:20:38 PM5/23/07 1:20:38 PM

38 Data 1: Variables

resolution. For example, using integer values, there is only one number between 3 and 5,
but fl oating-point numbers allow us to express myriad numbers between such as 4.0, 4.5,
4.75, 4.825, etc. Both int and fl oat values may be positive, negative, or zero.
 The simplest data element in Processing is a boolean variable. Variables of this
type can have only one of two values—true or false. The name boolean refers to the
mathematician George Boole (b. 1815), the inventor of Boolean algebra—the foundation
for how digital computers work. A boolean variable is often used to make decisions
about which lines of code are run and which are ignored.
 The following table compares the capacities of the data types mentioned above
with other common data types:

 Name Size Value range

 boolean 1 bit true or false

 byte 8 bits -128 to 127

 char 16 bits 0 to 65535

 int 32 bits -2,147,483,648 to 2,147,483,647

 float 32 bits 3.40282347E+38 to -3.40282347E+38

 color 32 bits 16,777,216 colors

Additional types of data are introduced and explained in Data 2 (p. 101), Data 3 (p. 105),
Image 1 (p. 95), Typography 1 (p. 111), and Structure 4 (p. 395).

Variables

A variable is a container for storing data. Variables allow a data element to be reused
many times within a program. Every variable has two parts, a name and a value. If the
number 21 is stored in the variable called age, every time the word age appears in the
program, it will be replaced with the value 21 when the code is run. In addition to its name
and value, every variable has a data type that defi nes the category of data it can hold.
 A variable must be declared before it is used. A variable declaration states the data
type and variable name. The following lines declare variables and then assign values to
the variables:

int x; // Declare the variable x of type int

float y; // Declare the variable y of type float

boolean b; // Declare the variable b of type boolean

x = 50; // Assign the value 50 to x

y = 12.6; // Assign the value 12.6 to y

b = true; // Assign the value true to b

3-01

Reas_01_001-084.indd Sec2:38Reas_01_001-084.indd Sec2:38 5/23/07 1:20:38 PM5/23/07 1:20:38 PM

39 Data 1: Variables

As a shortcut, a variable can be declared and assigned on the same line:

int x = 50;

float y = 12.6;

boolean b = true;

More than one variable can be declared in one line, and the variables can then be
assigned separately:

float x, y, z;

x = -3.9;

y = 10.1;

z = 124.23;

When a variable is declared, it is necessary to state the data type before its name;
but after it’s declared, the data type cannot be changed or restated. If the data type is
included again for the same variable, the computer will interpret this as an attempt to
make a new variable with the same name, and this will cause an error (an exception to
this rule is made when each variable has a different scope, p. 178):

int x = 69; // Assign 69 to x

x = 70; // Assign 70 to x

int x = 71; // ERROR! The data type for x is duplicated

The = symbol is called the assignment operator. It assigns the value from the right side
of the = to the variable on its left. Values can be assigned only to variables. Trying to
assign a constant to another constant produces an error:

// Error! The left side of an assignment must be a variable

5 = 12;

When working with variables of different types in the same program, be careful not to
mix types in a way that causes an error. For example, it’s not possible to fi t a fl oating-
point number into an integer variable:

// Error! It’s not possible to fit a floating-point number into an int

int x = 24.8;

float f = 12.5;

// Error! It’s not possible to fit a floating-point number into an int

int y = f;

3-02

3-03

3-04

3-05

3-06

3-07

Reas_01_001-084.indd Sec2:39Reas_01_001-084.indd Sec2:39 5/23/07 1:20:39 PM5/23/07 1:20:39 PM

40 Data 1: Variables

Variables should have names that describe their content. This makes programs easier
to read and can reduce the need for verbose commenting. It’s up to the programmer
to decide how she will name variables. For example, a variable storing the room
temperature could logically have the following names:

 t

 temp

 temperature

 roomTemp

 roomTemperature

Variables like t should be used minimally or not at all because they are cryptic—there’s
no hint as to what they contain. However, long names such as roomTemperature
can also make code tedious to read. If we were writing a program with this variable,
our preference might be to use the name roomTemp because it is both concise and
descriptive. The name temp could also work, but because it’s used commonly as an
abbreviation for “temporary,” it wouldn’t be the best choice.
 There are a few conventions that make it easier for other people to read your
programs. Variables’ names should start with a lowercase letter, and if there are multiple
words in the name, the fi rst letter of each additional word should be capitalized. There
are a few absolute rules in naming variables. Variable names cannot start with numbers,
and they must not be a reserved word. Examples of reserved words include int, if,
true, and null. A complete list is found in Appendix B (p. 663). To avoid confusion,
variables should not have the same names as elements of the Processing language
such as line and ellipse. The complete Processing language is listed in the reference
included with the software.
 Another important consideration related to variables is the scope (p. 178). The scope
of a variable defi nes where it can be used relative to where it’s created.

Processing variables

The Processing language has built-in variables for storing commonly used data. The
width and height of the display window are stored in variables called width and
height. If a program doesn’t include size(), the width and height variables are both
set to 100. Test by running the following programs

println(width + ", " + height); // Prints "100, 100" to the console

size(300, 400);

println(width + ", " + height); // Prints "300, 400" to the console

size(1280, 1024);

println(width + ", " + height); // Prints "1280, 1024" to the console

3-08

3-09

3-10

Reas_01_001-084.indd Sec2:40Reas_01_001-084.indd Sec2:40 5/23/07 1:20:39 PM5/23/07 1:20:39 PM

41 Data 1: Variables

Using the width and height variables is useful when writing a program to scale to
different sizes. This technique allows a simple change to the parameters of size()
to alter the dimensions and proportions of a program, rather than changing values
throughout the code. Run the following code with different values in the size()
function to see it scale to every window size.

size(100, 100);

ellipse(width*0.5, height*0.5, width*0.66, height*0.66);

line(width*0.5, 0, width*0.5, height);

line(0, height*0.5, width, height*0.5);

You should always use actual numbers in size() instead of variables. When a sketch is
exported, these numbers are used to determine the dimension of the sketch on its Web
page. More information about this can be seen in the reference for size().
 Processing variables that store the cursor position and the most recent key pressed
are discussed in Input 1 (p. 205) and Input 2 (p. 223).

 Exercises
1. Think about different types of numbers you use daily. Are they integer or
 fl oating-point numbers?
2. Make a few int and float variables. Try assigning them in different ways. Write the
 values to the console with println().
3. Create a composition that scales proportionally with different window sizes.
 Put different values into size() to test.

3-11

Reas_01_001-084.indd Sec2:41Reas_01_001-084.indd Sec2:41 5/23/07 1:20:39 PM5/23/07 1:20:39 PM

