
Coding Freedom

THE ETHICS AND AESTHETICS

OF HACKING

••

E . G A B R I E L L A C O L E M A N

P R I N C E T O N U N I V E R S I T Y P R E S S

P R I N C E T O N A N D O X F O R D

Copyright © 2013 by Princeton University Press

Creative Commons Attribution- NonCommercial- NoDerivs CC BY- NC- ND

Requests for permission to modify material from this work should be sent to
Permissions, Princeton University Press

Published by Princeton University Press, 41 William Street, Princeton,
New Jersey 08540

In the United Kingdom: Princeton University Press, 6 Oxford Street,
Woodstock, Oxfordshire OX20 1TW

press.princeton.edu

All Rights Reserved

At the time of writing of this book, the references to Internet Web sites (URLs) were accurate.
Neither the author nor Princeton University Press is responsible for URLs that may have

expired or changed since the manuscript was prepared.

Library of Congress Cataloging-in-Publication Data
Coleman, E. Gabriella, 1973–
Coding freedom : the ethics and aesthetics of hacking / E. Gabriella Coleman.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-691-14460-3 (hbk. : alk. paper)—ISBN 978-0-691-14461-0 (pbk.

: alk. paper) 1. Computer hackers. 2. Computer programmers. 3. Computer
programming—Moral and ethical aspects. 4. Computer programming—Social
aspects. 5. Intellectual freedom. I. Title.

HD8039.D37C65 2012
174’.90051--dc23 2012031422

British Library Cataloging- in- Publication Data is available

This book has been composed in Sabon

Printed on acid- free paper. ∞
Printed in the United States of America

1 3 5 7 9 10 8 6 4 2

This book is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE

••

We must be free not because we claim freedom,
but because we practice it.

— William Faulkner, “On Fear: The South in Labor”

Without models, it’s hard to work; without a context,
dif" cult to evaluate; without peers, nearly

 impossible to speak.
— Joanna Russ, How to Suppress Woman’s Writing

C H A P T E R 5

Code Is Speech

••

Like many computer a" cionados today, Seth Schoen writes all of his soft-
ware as free software to ensure that the source code— the underlying

directions of computer programs— will remain accessible for other devel-
opers to use, modify, and redistribute. In so doing, Schoen not only makes
technology but also participates in an effort that rede" nes the meaning of
liberal freedom, property, and software by asserting in new ways that code
is speech. A tiny portion of a 456- stanza haiku written by Schoen (2001),
for example, makes just this claim:

Programmers’ art as
that of natural scientists

is to be precise,

complete in every
detail of description, not
leaving things to chance.

Reader, see how yet
technical communicants

deserve free speech rights;

see how numbers, rules,
patterns, languages you don’t

yourself speak yet,

still should in law be
protected from suppression,

called valuable speech!1

Schoen’s protest poem not only argued that source code is speech but
also demonstrated it: the extensive haiku was in fact a transcoding of a
short piece of free software called DeCSS, which could be used to decrypt
access controls on DVDs in violation of current copyright laws. Schoen did
not write this poem simply to be clever. His work was part of a worldwide
wave of protests following the arrest of DeCSS’ coauthor, Johansen, and the
lawsuits launched against some of those who published the software.

1 6 2 C H A P T E R 5

In this chapter, I examine how F/OSS developers like Schoen are recon-
" guring what source code and speech mean ethically, legally, and culturally,
and the broader political consequences of these rede" nitions. I demonstrate
how developers refashion liberal precepts in two distinct cultural “loca-
tions” (Gupta and Ferguson 1997): the F/OSS project, already covered in
detail in the last chapter, and the context of much broader legal battles.

First, I show how F/OSS developers explore, contest, and specify the
meaning of liberal freedom— especially free speech— via the development
of new legal tools and discourses within the context of the F/OSS project. I
highlight how developers concurrently tinker with technology and the law
using similar skills, which transform and consolidate ethical precepts among
developers. Using Debian as my primary ethnographic example, I suggest
that these F/OSS projects have served as an informal legal education, trans-
forming technologists into astute legal thinkers who are experts in the legal
technicalities of F/OSS as well as pro" cient in the current workings of intel-
lectual property law.

Second, I look at how these developers marshal and bolster this legal
expertise during broader legal battles to engage in what Charles Tilly and
Sidney Tarrow (2006) describe as “contentious politics.” I concentrate on a
series of critical events (Sewell 2005): the separate arrests of two program-
mers, Johansen and Sklyarov, and the protests, unfolding between 1999 and
2003, that they provoked. These events led to an unprecedented prolifera-
tion of claims connecting source code to speech, with Schoen’s 456- stanza
poem providing one of many well- known instantiations. The events are his-
torically notable because they dramatize what normally exists more tacitly
and bring visibility to two important social processes. First, they publicize
the direct challenge that F/OSS represents to the dominant regime of intel-
lectual property (and thus clarify the democratic stakes involved), and sec-
ond, they make more visible and hence stabilize a rival liberal legal regime
intimately connecting source code to speech.

TH E ET H I C S O F LE G A L CO N T R A S T

Debian developers, like other F/OSS developers, are constituted as legal sub-
jects by virtue of being extremely active producers of legal knowledge. This
is an outgrowth of three circumstances. For one, developers have to learn
basic legal knowledge in order to participate effectively in technological
production. They must ascertain, for instance, whether the software license
on the software application they maintain is compliant with licensing stan-
dards, such as the DFSG. Second, developers tend to closely track broader
legal developments, especially those seen as impinging on their practices.
Is the Unix company SCO suing IBM over Linux? Has the patent direc-
tive passed in the EU Parliament? Information regarding these and other

C O D E I S S P E E C H 1 6 3

relevant developments is posted widely on IRC channels, mailing lists, and
especially Web sites such as Slashdot, Boing Boing, and Reddit. These chan-
nels form a crucial part of the discourse of the hacker public. Third and
most important, developers largely produce their own legal artifacts, and as
a result, there is a tremendous body of legal exegesis (e.g., charters, licenses,
and legal texts) in the everyday life of their F/OSS projects. Projects adopt
the language of the law to organize their operations, adding a legal layer to
the structural sovereignty of these projects.

To be sure, there are some developers who express an overt distaste
for discussions of legal policy and actively distance themselves from this
domain of polluting politics. But even though the superiority of technical
over legal language, even technical over legal labor, is acknowledged among
hackers— some hackers will even claim that it is a waste of time (or as stated
a bit more cynically yet humorously by one developer: “Writing an algo-
rithm in legalese should be punished with death [. . .] a horrible one, by
preference”)— it is critical to recognize that geeks are in fact nimble legal
thinkers. One reason for this facility, I suggest, is that the skills, mental
dispositions, and forms of reasoning necessary to read and analyze a for-
mal, rule- based system like the law parallel the operations necessary to code
software. Both, for example, are logic oriented, internally consistent textual
practices that require great attention to detail. Small mistakes in both law
and software— a missing comma in a contract or a missing semicolon in
code— can jeopardize the system’s integrity and compromise the author’s
intention. Both lawyers and programmers develop mental habits for mak-
ing, reading, and parsing what are primarily utilitarian texts. As noted by
two lawyers who work on software and law, “coders are people who write
in subtle, rule- oriented, specialized, and remarkably complicated dialects”—
something, they argue, that also pertains to how lawyers make and interpret
the law (Cohn and Grimmelmann 2003).2

This helps us understand why it has been relatively easy for developers to
integrate the law into everyday technical practice and advocacy work, and
avoid some of the frustration that af2 icts lay advocates trying to acquire
legal 2 uency to make larger political claims. For example, in describing the
activists who worked on behalf of the victims of the Bhopal disaster, Kim
Fortun (2001, 25– 54) perceptively shows how acquiring legal 2 uency (or
failing to adequately do so) and developing the correct legal strategy is frus-
trating, and can lead to cynicism. Many hackers are similarly openly cynical
about the law because it is seen as easily subject to political manipulation;
others would prefer not to engage with the law as it takes time away from
what they would rather be doing— hacking. Despite this cynicism, I never
encountered any expression of frustration about the actual process of learn-
ing the law. A number of developers I worked with at the Electronic Frontier
Foundation or those in the Debian project clearly enjoyed learning as well
as arguing about a pragmatic subset of the law (such as a particular legal

1 6 4 C H A P T E R 5

doctrinal framework), just as they did with respect to technology. Many
developers apply the same skills required for hacking to the law, and as we
will see, technology and the law at times seamlessly blend into each other.

To offer a taste of this informal legal scholarship— the relationship be-
tween technical expertise and legal understanding, and how legal questions
are often tied to moral issues— in one free software project, I will describe
some of Debian’s legal micropractices: its routine legal training, advocacy,
and exegesis. In order to deepen this picture of how developers live in and
through the law, I proceed to a broader struggle— one where similar legal
processes are under way, but also are more visible because of the way they
have circulated beyond the boundaries of projects proper.

“LI V I N G OU T LE G A L ME A N I N G”

Just over a thousand volunteers are participating in the Debian project at
this time, writing and distributing a Linux- based OS composed over twenty-
" ve thousand individual software applications. In its nascency, Debian was
run entirely informally; it had fewer than two dozen volunteers, who com-
municated primarily through a single email list. To accommodate growth,
however, signi" cant changes in policy, procedures, and structure took place
between 1997 and 1999. The growth of Debian, as discussed in the last
chapter, necessitated the creation of more formal institutional policies and
procedures. Central to these procedures is the NMP, which not only screens
candidates for technical skills but also serves as a form of legal education.

Several questions in the NMP application cover what is now one of the
most famous philosophical and legal distinctions in the world of free soft-
ware: free beer versus free speech. Common among developers today, this
distinction arose only recently, during the early to mid- 1990s. A prospective
Debian developer comments on the difference in an NMP application: “Free
speech is the possibility of saying whatever one wants to. Software [that is]
free as in beer can be downloaded and used for free, but no more. Software
[that is] free as in speech can be " xed, improved, changed, [or] be used
as building block for another [sic] software.”3 Some developers also note
that their understanding of free speech is nested within a broader liberal
meaning codi" ed in the constitutions of most liberal democracies: “Used
in this context the difference is this: ‘free speech’ represents the freedom to
use/modify/distribute the software as if the source code were actual speech
which is protected by law in the US by the First Amendment. [. . .] ‘[F]ree
beer’ represents something that is without monetary cost.”4 This differentia-
tion between free beer and free speech is the clearest enunciation of what,
to these developers, are the core meanings of free— expression, learning,
and modi" cation. Freedom is understood foremost to be about personal
control and autonomous production, and decidedly not about commodity

C O D E I S S P E E C H 1 6 5

consumption or “possessive individualism” (Macpherson 1962)— a message
that is constantly restated by developers: free software is free as in speech,
not in beer.

This distinction may seem simple, but the licensing implications of free-
dom and free speech are complicated enough that the NMP continues with
a series of technically oriented questions whose answers start to enter the
realm of legal interpretation. Many of these questions concern the DFSG, a
set of ten provisions by which to measure whether a license can be consid-
ered free. Of these questions, one or two are fairly straightforward, such as:

“Do you know what’s wrong with Pine’s current license in regard to
the DFSG?”

After looking at the license on the upstream site it is very clear why
Pine is non- free. It violates the following clauses of the DFSG:

 1. No Discrimination Against Fields of Endeavor— it has different
requirements for non- pro" t vs. pro" t concerns.

 2. License Must Not Contaminate Other Software— it insists that all
other programs on a CD-ROM must be “free- of- charge, shareware,
or non- proprietary.”

 3. Source Code— it potentially restricts binary distribution [binary
refers to compiled source code].

The sample license for an e- mail program, Pine, violates a number
of DFSG provisions. With different provisions for nonpro" t and for-
pro" t endeavors, as an example, it discriminates according to what the
DFSG calls “" elds of endeavor.”

Developers are then asked a handful of far more technical licensing ques-
tions, among them: “At http://people.debian.org/~joerg/bad.licenses.tar.bz2
you can " nd a tarball of bad licenses. Please compare the graphviz and
three other (your choice) licenses with the " rst nine points of the DFSG and
show what changes would be needed to make them DFSG-free.” The answer
clearly demonstrates the depth of legal expertise required to address these
questions: “Remove the discriminatory clauses [. . .] allow distribution of
compiled versions of the original source code [. . .] replace [sections] 4.3
with 4.3.a and 4.3.b and the option to choose.”5

After successfully " nishing the NMP, some developers think only rarely
about the law or the DFSG, perhaps only tracking legal developments of
personal interest. Even if a developer is not actively learning the law, how-
ever, legal discourse is nearly unavoidable because of the frequency with
which it appears on Debian mailing lists or chat channels. Informal legal
pedagogy thus continues long after the completion of the NMP.

As an illustration, below I quote from an arcane discussion on IRC wherein
a developer proposed a new Debian policy that would clarify how non- free-
software packages (those noncompliant with their license guidelines) should

1 6 6 C H A P T E R 5

be categorized so as to make it absolutely clear how and why they cannot be
included in the main software repository, which can only have free software.
I do not want to emphasize the exact legal or technical details but rather
how, late on a Friday night (when the conversation happened), a developer
made a policy recommendation, and his peers immediately offered advice
on how to proceed, talking about the issue with such sophisticated legal
vocabulary that to the uninitiated, it will likely appear as obscure, obtuse,
and hard to follow. This is simply part of the “natural” social landscape of
most free software projects.

<dangmang> Markel: what is your opinion about making a recommenda-
tion in policy that packages in non- free indicate why they’re in non-
free, and what general class of restrictions the license has?

<markel> dangmang: well, I am not too keen on mandating people
do more work for non- free packages. but it may be a good practice
suggestion.

<jabberwalkie> dangmang: Then I would suggest that the ideal approach
would be to enumerate all the categories you want to handle ! rst, giv-
ing requirements to be in those categories.

<dangmang> Markel: true. could the proposal be worded so that new
uploads would have to have it? [. . .]

<jabberwalkie> dangmang: You don’t want to list what issues they fail;
you want to list what criteria they meet. [. . .]

<jabberwalkie> dangmang: X- Nonfree- Permits: autobuildable, modi! able,
portable.

<markel> the developers- reference should mention it, and policy can
recommend it, for starters.

<markel> dangmang: we need to have well de! ned tags.
<jabberwalkie> mt3t: “gfdl,” “! rmware.” [. . .]

<jabberwalkie> mt3t: No “You may not port this to _____.”
<jabberwalkie> mt3t: You wouldn’t believe what people put in their

licenses. :)
<dangmang> Markel: right. [. . .] I think I’ll start on the general outline of

the proposal, and # esh things out, and hopefully people will have com-
ments to make in policy too when I start the procedure.

More formal legal avenues are also employed. Debian developers may
contact the original author (called the upstream maintainer) of a piece of
software that they are considering including and maintaining in Debian.
Many of these exchanges concern licensing problems that would keep
the software out of Debian. In this way, non- Debian developers also un-
dergo informal legal training. Sometimes developers act in the capacity
of legal advocates, convincing these upstream maintainers to switch to a

C O D E I S S P E E C H 1 6 7

DFSG- compliant license, which is necessary if the software is to be included
in Debian.

The developers who hold Debian- wide responsibilities must in general
be well versed in the subtleties of F/OSS licensing. The FTP masters, who
integrate new software packages into the main repository, must check every
single package license for DFSG compatibility. Distributing a package ille-
gally could leave Debian open to lawsuits.

One class of Debian developers has made legal matters their obses-
sion. These a" cionados contribute proli" cally to the legal pulse of Debian
in debian- legal— a mailing list that because of its legal esoterica and large
number of posts, is not for the faint of heart. For those who are interested
in keeping abreast but do not have time to read every message posted on
debian- legal, summaries link to it in a weekly newsletter, Debian Weekly
News. Below, I quote a fraction (about one- " fth) of the legal news items
that were reported in Debian Weekly News during the course of 2002 (the
numbers are references linking to mailing list threads or news stories):

GNU FDL a non- free License? Several [22] people are [23] discussing
whether the [24] GNU Free Documentation License (GFDL) is a free
license or not. If the GFDL is indeed considered a non- free license, this
would [25] render almost all KDE and many other well known pack-
ages non- free since they use the GNU FDL for the documentation.
Additionally, here’s an old [26] thread from debian- legal, which may
shed some light on the issue.6

RFC: LaTeX Public Project License. Claire Connelly [4] reported
that the LaTeX Project is in the process of considering changes to the
LaTeX Project Public License. She tried to summarize some of the
concerns that Debian people have expressed regarding the changes.
Hence, Frank Mittelbach asked for reviews of the draft of version 1.3
of the [5] LaTeX Public Project License rather than of the current ver-
sion (1.2).7

Enforcing Software Licenses. Lawrence Rosen, general counsel for the
[20] Open Source Initiative, wrote an [21] article about the enforce-
ability of software licenses. In particular, he discusses the issue of prov-
ing that somebody assented to be bound by the terms of a contract
so that those terms will be enforced by a court. Authors who wish to
be able to enforce license terms against users of their source code or
compiled programs may " nd this interesting.8

Problematic BitKeeper License. Branden Robinson [3] pointed out
that some of us may be exposed to tort claims from BitMover, Inc.,
the company that produces BitKeeper, the software that is the primary
source management tool for the Linux kernel. Your license to use Bit-
Keeper free of charge is revoked if you or your employer develop,

1 6 8 C H A P T E R 5

produce, sell, or resell a source management tool. Debian distributes
rcs, cvs, subversion and arch at least and this seems to be a [4] different
case. Ben Collins, however, who works on both the Linux kernel and
the subversion project, got his license to use BitKeeper free of charge
[5] revoked.9

These are newsletter summaries, which are read by thousands of develop-
ers outside the Debian community proper as well as by Debian developers.
Practical and immediate concerns are layered on global currents along with
more philosophical musings. Some discussions can be short, breeding less
than a dozen posts; other topics are multiyear, multilist, and may involve
other organizations, such as the FSF. These conversations may eventually
expand and reformulate licensing applications.

It is also worth noting how outsiders turn to Debian developers for legal
advice. One routine task undertaken in debian- legal is to help developers
and users choose appropriate licensing, by providing in- depth summaries
of alternative licenses compliant with the DFSG. One such endeavor I wit-
nessed was to determine whether a class of Creative Commons licenses (de-
veloped to provide creative producers, such as musicians and writers, with
alternatives to copyright) was appropriate for software documentation.
Debian developers assessed that the Creative Commons licenses under con-
sideration failed to meet the DFSG’s standards, and suggested that Debian
developers not look to them as licensing models. The most remarkable as-
pect of their analysis is that it concluded with a detailed set of recommen-
dations for alterations to make the Creative Commons licenses more free
according to the Debian licensing guidelines. In response to these recom-
mendations, Lessig of Creative Commons contacted Evan Prodromou, one
of the authors of this analysis, to try to " nd solutions to the incompatibili-
ties between the DFSG and some of the Creative Commons licenses.

There is something ironic, on the one hand, about a world- renowned
lawyer contacting a bunch of geeks with no formal legal training to dis-
cuss changes to the licenses that he created. On the other hand, who else
would Lessig contact? These developers are precisely the ones making and
therefore inhabiting this legal world. These geeks are training themselves to
become legal experts, and much of this training occurs in the institution of
the free software project.

Debian’s legal affairs not only produce what a group of legal theo-
rists have identi" ed as everyday legal awareness (Ewick and Silbey 1998;
Mezey 2001; Yngvesson 1989). The F/OSS arena probably represents the
largest single association of amateur intellectual property and free speech
legal scholars ever to have existed. Given the right circumstances, many
developers will marshal this expertise as part of broader, contentious bat-
tles over intellectual property law and the legality of software— the topic
of the next section.

C O D E I S S P E E C H 1 6 9

CO N T E N T I O U S PO L I T I C S

If hackers acquire legal expertise by participating in F/OSS projects, they
also use and fortify their expertise during broader legal battles. Here I ex-
amine one of the most heated of the recent controversies over intellectual
property, software, and access: the arrests of Johansen and Sklyarov. These
arrests provoked a series of protests and produced a durable articulation of
a free speech ethic that under the umbrella of F/OSS development, had been
experiencing quiet cultivation in the previous decade. Intellectual prop-
erty has been debated since its inception (Hesse 2002; Johns 2006; McGill
2002), but as media scholar Siva Vaidhyanathan (2004, 298) notes, in recent
times intellectual property debates have “rarely punctured the membrane of
public concern.” It was precisely during this period (1999 to 2003), and in
part because of these events, that a more visible, notable, and “contentious
politics” (Tilly and Tarrow 2006) over intellectual property emerged, espe-
cially in North America and Europe.

Before discussing how the emergence of this contentious politics worked
to stabilize the connection between speech and code, some historical context
is necessary. At the most general level, we can say a free speech idiom formed
as a response to the excessive copyrighting and patenting of computer soft-
ware. Prior to 1976, such an idiom had been rare. The " rst widely circu-
lated paper associating free speech and source code was “Freedom of Speech
in Software,” written by programmer Peter Salin (1991). He characterized
computer programs as “writings” to argue that software was un" t for pat-
ents, although appropriate for copyrights and thus free speech protections
(patents being for invention, and copyright being for expressive content).
The idea that coding was a variant of writing was also gaining traction,
in part because of the popular publications of Stanford Computer Science
professor Donald Knuth (1998; see also Black 2002) on the art of pro-
gramming. During the early 1990s, a new ethical sentiment emerged among
Usenet enthusiasts (many of them hackers and developers) that the Internet
should be a place for unencumbered free speech (Pfaffenberger 1996). This
sensibility in later years would become speci" ed and attached to technical
artifacts such as source code.

Perhaps most signi" cantly, what have come to be known as the “encryp-
tion wars” in the mid- 1990s were waged over the right to freely publish
and use software cryptography in the face of governmental restrictions that
classi" ed strong forms of encryption as munitions. The most notable juridi-
cal case in these struggles was Bernstein v. U.S. Department of Justice. The
battles started in 1995 after a computer science student, Daniel J. Bernstein,
sued the government to challenge international traf" c in arms regulations,
which classi" ed certain types of strong encryption as munitions and hence
subjected them to export controls. Bernstein could not legally publish or
export the source code of his encryption system, Snuf2 e, without registering

1 7 0 C H A P T E R 5

as an arms dealer. After years in court, in 1999 the judge presiding over the
case concluded that government regulations of cryptographic “software and
related devices and technology are in violation of the First Amendment on
the grounds of prior restraint.”10

What is key to highlight is how neither Salin’s article nor the Bernstein
case questioned copyright as a barrier to speech. With the rise of free soft-
ware, developers began to launch a direct critique of copyright. The tech-
nical production of free software had trained developers to become legal
thinkers and tinkerers well acquainted with the intricacies of intellectual
property law as they became committed to an alternative liberal legal sys-
tem steeped in discourses of freedom and, increasingly, free speech. If the
" rst free speech claims among programmers were proposed by a handful
of developers and deliberated in a few court cases in the early to mid-
1990s, in the subsequent decade they grew social roots in the institution
of the F/OSS project. Individual commitments and intellectual arguments
developed into a full- 2 edged collective social practice anchored " rmly in
F/OSS technical production.

Unanticipated state and corporate interventions, though, raised the stakes
and gave this rival legal morality a new public face. Indeed, it was only be-
cause of a series of protracted legal battles that the signi" cance of hacker
legal expertise and free speech claims became apparent to me. I had, like so
many developers, not only taken their free speech arguments about code
as self- evident but also taken for granted their legal skills in the making of
these claims. Witnessing and participating in the marches, candlelight vigils,
street demonstrations, and artistic protests (many of them articulated in le-
gal terms), among a group of people who otherwise tend to shy away from
such overt forms of traditional political action (Coleman 2004; Galloway
2004; Riemens 2003), led me to seriously reevaluate the deceptively simple
claim: that code is speech. In other words, what existed tacitly became ex-
plicit after a set of exceptional arrests and lawsuits.

PO E T I C PR O T E S T

On October 6, 1999, a sixteen- year- old Johansen used a mailing list to re-
lease a short, simple software program called DeCSS. Written by Johansen
and two anonymous developers, DeCSS unlocks a piece of encryption by the
name of CSS (short for content scramble system), a form of Digital Rights
Management (DRM) used to regulate DVDs. CSS “is a lock rather than
block” (Gillespie 2007, 170) preventing a DVD with CSS from being played
on a device that has not been approved by the DVD Copy Control Associa-
tion (DVD CCA), the organization that licenses CSS to hardware manufac-
tures. Before DeCSS, only computers using either Microsoft’s Windows or
Apple’s OS could play DVDs; Johansen’s program allowed Linux users to

C O D E I S S P E E C H 1 7 1

unlock a DVD’s DRM to play movies on their computers. Released under
a free software license, DeCSS soon was being downloaded from hundreds
or possibly thousands of Web sites. In the hacker public, the circulation of
DeCSS would transform Johansen from an unknown geek into a famous
“freedom " ghter”; elsewhere, entertainment industry executives saw his
program as criminal and sought Johansen’s arrest.

Although many geeks were gleefully using this technology to bypass a
form of DRM so they could watch DVDs on their Linux machines, various
trade associations sought to ban the software because it made it easier to
copy and potentially pirate DVDs (Gillespie 2007). In November 1999, soon
after its initial spread, the DVD CCA and the MPAA sent cease- and- desist
letters to more than " fty Web site owners and Internet service providers,
requiring them to remove links to the DeCSS code for its alleged violation of
trade secret and copyright laws, and in the United States, the DMCA. Passed
in 1998 to “modernize” copyright for digital content, the DMCA’s most con-
troversial provision outlaws the manufacture and traf" cking of technology
(which can mean something immaterial, such as a six- line piece of source
code, or something physical) capable of circumventing copy or access protec-
tion in copyrighted works that are in a digital format. The DMCA outlaws
the traf" cking and circulation of such a tool, even if it can be used for lawful
purposes (such as fair use copying) or is never used. “Now with the DMCA,”
media scholar Tartelton Gillespie (2007, 184) perceptively notes, “circum-
vention is prohibited, meaning that the technologies that automatically en-
force these licenses are further assured by the force of the law.”

In December 1999, alleging trade secret misappropriation, the DVD CCA
" led a lawsuit against hundreds of individuals, and eventually two cases
from this batch moved forward.11 In 2000, the MPAA (along with other
trade associations) sued the well- known hacker organization and publica-
tion 2600 along with its founder, Eric Corley (more commonly known by
his hacker handle, Emmanuel Goldstein), claiming violation of the DMCA.12
Corley would " ght the lawsuits, appealing to 2600’s journalistic free speech
right to publish DeCSS. As frequently happens with censored material, the
DeCSS code at this time was unstoppable; it spread like wild" re.

Simultaneously, the international arm of the MPAA urged prosecution of
Johansen under Norwegian law (the DMCA, a US law, had no jurisdiction
there). The Norwegian Economic and Environmental Crime Unit took the
MPAA’s informal legal advice and indicted Johansen on January 24, 2000,
for violating an obscure Norwegian criminal code. Johansen (and since he
was underage, his father) was arrested and released on the same day, and
law enforcement con" scated his computers. He was scheduled to face trial
three years later.

Hackers and other geek enthusiasts discussed, debated, and decried these
events, and a few consistent topics emerged. The in2 uence of the court case
discussed above, Bernstein v. U.S. Department of Justice, was one such

1 7 2 C H A P T E R 5

theme. This case established that software could be protected under the First
Amendment, and in 1999, caused the overturning of the ban on the exporta-
tion of strong cryptography. Programmers could write and publish strong
encryption on the grounds that software was speech.

F/OSS advocates, seeing the DeCSS case as a similar situation, hoped that
the courts just might declare DeCSS worthy of First Amendment protection.
Consider the " rst message posted on dvd- discuss— a mailing list that would
soon attract a multitude of programmers, F/OSS developers, and activist
lawyers to discuss every imaginable detail concerning the DeCSS cases:

I see the DVD cases as the natural complement to Bernstein’s case. Just as
free speech protects the right to communicate results about encryption, so
it protects the right to discuss the technicalities of decryption. In this case as
well as Bernstein’s, the government’s policy is to promote insecurity to achieve
security. This oxymoronic belief is deeply troubling, and worse endangers the
very interests it seeks to protect.13

There were, it turned out, signi" cant differences between Bernstein and
DeCSS. In the Bernstein case, hackers were primarily engaged spectators.
Furthermore, many free software advocates were critical of Bernstein’s deci-
sion to copyright, and so tightly control, all of his software. In the DeCSS
and DVD cases, by contrast, many F/OSS hackers became participants by in-
jecting into the controversy notions of free software, free speech, and source
code (a language they were already 2 uent in from F/OSS technical develop-
ment). Hackers saw Johansen’s indictment and the lawsuits as a violation of
not simply their right to software but also their more basic right to produce
F/OSS. As the following call to arms reveals, many hackers understood the
attempt to restrict DeCSS as an all- out assault:

Here’s why they’re doing it: Scare tactic. [. . .] I know a lot of us aren’t politi-
cal enough— but consider donating a few bucks and also mirroring the source.
[. . .] This is a full- 2 edged war now against the Open Source movement:
they’re trying to stop [. . .] everything. They can justify and rationalize all
they want— but it’s really about them trying to gain/maintain their monopoly
on distribution.14

Johansen was, for hackers, the target of a law that fundamentally chal-
lenged their freedom to tinker and write code— values that acquired coher-
ence and had been articulated in the world of F/OSS production only in the
last decade.

Hackers moved to organize politically. Many Web sites providing highly
detailed information about the DMCA, DeCSS, and copyright history went
live, and the Electronic Frontier Foundation launched a formal “Free Jon
Johansen” campaign. All this was helping to stabilize the growing links

C O D E I S S P E E C H 1 7 3

between source code and software, largely because of the forceful arguments
that computer code constitutes expressive speech. Especially prominent was
an amicus curiae brief on the expressive nature of source code written by a
group of computer scientists and hackers (including Stallman) as well as the
testimony of one of its authors, Carnegie Mellon computer science profes-
sor David Touretzky, a " erce and well- known free speech loyalist. Just as
they dissected free software licensing, F/OSS programmers quickly learned
and scrutinized these court cases, behaving in ways that democratic theo-
rists would no doubt consider exemplary. Linux Weekly News, for example,
published the following overview and analysis of Touretzky’s testimony:

His point was that the restriction of source is equivalent to a restriction on
speech, and would make it very hard for everybody who works with com-
puters. The judge responded very well to Mr. Touretzky’s testimony, saying
things like [. . .] “I think one thing probably has changed with respect to
the constitutional analysis, and that is that subject to thinking about it some
more, I really ! nd what Professor Touretzky had to say today extremely per-
suasive and educational about computer code.” [. . .]
Thus, there are two rights being argued here. One is that [. . .] we have
the right to look at things we own and " gure out how they work. We even
have the right to make other things that work in the same way. The other is
that code is speech, that there is no way to distinguish between the two. In
the U.S., of course, equating code and speech is important, because protec-
tions on speech are (still, so far) relatively strong. If code is speech, then we
are in our rights to post it. If these rights are lost, Free Software is in deep
trouble.15

In this exegesis, we see again how free software developers wove together free
software, source code, and free speech. These connections had recently been
absent in hacker public discourse. Although Stallman certainly grounded
the politics of software in a vocabulary of freedom, and Bernstein’s " ght
introduced a far more legally sophisticated idea of the First Amendment for
software, it was only with the DeCSS case that a more proli" c and speci" c
language of free speech would come to dominate among F/OSS developers,
and circulate beyond F/OSS proper. In the context of F/OSS development
in conjunction with the DeCSS case, the conception of software as speech
became a cultural reality.

Much of the coherence emerged through reasoned political debate.
Cleverness— or prankstership— played a pivotal role as well. Prodromou,
a Debian developer and editor of one of the " rst Internet zines, Pigdog,
circulated a decoy program that hijacked the name DeCSS, even though it
performed an entirely different operation from Johansen’s DeCSS. Prodro-
mou’s DeCSS stripped cascading style sheets data (i.e., formatting informa-
tion) from HTML pages:

1 7 4 C H A P T E R 5

Hey, so, I’ve been really mad about the recent spate of horrible witch hunts
by the MPAA against people who use, distribute, or even LINK TO sites that
distribute DeCSS, a piece of software used for playing DVDs on Linux. The
MPAA has got a bee in their bonnet about this DeCSS. They think it’s good
for COPYING DVDs, which, in fact, it’s totally useless for. But they’re suing
everybody ANYWAYS, the bastardos!
Anyways, I feel like I need to do something. I’ve been talking about the whole
travesty here on Pigdog Journal and helped with the big 2 ier campaign here
in SF [. . .] , but I feel like I should do something more, like help redistribute
the DeCSS software.
There are a lot of problems with this, obviously. First and foremost, Pigdog
Journal is a collaborative effort, and I don’t want to bring down the legal shit-
storm on the rest of the Pigdoggers just because I’m a Free Software fanatic.
DeCSS is Born
So, I decided that if I couldn’t distribute DeCSS, I would distribute DeCSS.
Like, I could distribute another piece of software called DeCSS, that is per-
fectly legal in every way, and would be dif" cult for even the DVD- CCA’s
lawyers to " nd fault with. [. . .]
Distribute DeCSS!
I encourage you to distribute DeCSS on your Web site, if you have one. [. . .]
I think of this as kind of an “I am Spartacus” type thing. If lots of people dis-
tribute DeCSS on their Web sites, on Usenet newsgroups, by email, or what-
ever, it’ll provide a convenient layer of fog over the OTHER DeCSS. I " gure if
we waste just FIVE MINUTES of some DVD- CCA Web 2 unkey’s time looking
for DeCSS, we’ve done some small service for The Cause.16

Thousands of developers posted Pigdog’s DeCSS on their Web sites as 2 ak
to further confuse law enforcement of" cials and entertainment industry ex-
ecutives, since they felt these people were clueless about the nature of soft-
ware technology. Dozens of these developers (including Johansen) received
cease- and- desist letters demanding they take down a version of DeCSS that
was completely unrelated to the decryption DeCSS.

Clever re- creations of the original DeCSS source code (originally written
in the C programming language) using other languages (such as Perl) also
began to proliferate, as did translations into poetry, music, and " lm. A Web
site hosted by Touretzky, called the Gallery of CSS DeScramblers, show-
cased a set of twenty- four of these artifacts— the point being to demonstrate
the dif" culty of drawing a sharp line between functionality and expression
in software.17 Touretzky, an expert witness in the DeCSS case, said as much
in the introductory statement to his gallery:

If code that can be directly compiled and executed may be suppressed
under the DMCA, as Judge Kaplan asserts in his preliminary ruling, but
a textual description of the same algorithm may not be suppressed, then

C O D E I S S P E E C H 1 7 5

where exactly should the line be drawn? This web site was created to
explore this issue.18

Here is a short snippet (about one- " fth) of the original DeCSS source
code written in the C programming language:

void CSSdescramble(unsigned char *sec,unsigned char *key)
{
unsigned int t1,t2,t3,t4,t5,t6;
unsigned char *end=sec+0x800;
t1=key[0]^sec[0x54]|0x100;
t2=key[1]^sec[0x55];
t3=(*((unsigned int *)(key+2)))^(*((unsignedint *)(sec+0x56)));
t4=t3&7;
t3=t3*2+8- t4;
sec+=0x80;
t5=0;
while(sec!=end)
{
t4=CSStab2[t2]^CSStab3[t1];
t2=t1>>1;
t1=((t1&1)<<8)^t4;
t4=CSStab5[t4];
t6=(((((((t3>>3)^t3)>>1)^t3)>>8)^t3)>>5)&0xff;
t3=(t3<<8)|t6;
t6=CSStab4[t6];
t5+=t6+t4;
*sec++=CSStab1[*sec]^(t5&0xff);
t5>>=8;
}

Compare this fragment to another one written in Perl, a computer language that
hackers regard as particularly well suited for crafting poetic code because lon-
ger expressions can be condensed into much terser, sometimes quite elegant (al-
though sometimes quite obfuscated) statements. And indeed the original DeCSS
program, composed of 9,830 characters, required only 530 characters in Perl:

#!/usr/bin/perl - w
531- byte qrpff- fast, Keith Winstein and Marc Horowitz
<sipb- iap- dvd@mit.edu>
MPEG 2 PS VOB ! le on stdin - > descrambled output on stdout
arguments: title key bytes in least to most- signi! cant order
$_=‘while(read+STDIN,$_,2048){$a=29;$b=73;$c=142;$t=255;@
t=map{$_%16or$t^=$c^=($m=(11,10,116,100,11,122,20,100)
[$_/16%8])&110;$t^=(72,@z=(64,72,$a^=12*($_%162?
0:$m&17)),$b^=$_%64?12:0,@z)[$_%8]}(16..271);if((@

1 7 6 C H A P T E R 5

a=unx”C*”,$_)[20]&48){$h=5;$_=unxb24,join”“,@
b=map{xB8,unxb8,chr($_^$a[— $h+84])}@ARGV;s/ [. . .]
$/1$&/;$d=unxV,xb25,$_;$e=256|(ord$b[4])<<9|ord$b[3];$d=$d>
>8^($f=$t&($d>>12^$d>>4^$d^$d/8))<<17,$e=$e>>8^($t&($g
=($q=$e>>14&7^$e)^$q*8^$q<<6))<<9,$_=$t[$_]^(($h>>=8)+=
$f+(~$g&$t))for@a[128..$#a]}print+x”C*”,@a}’;s/x/pack+/g;eval

If Perl allows programmers to write code more poetically (in this case, being
terse) than other computer languages, Schoen took up the challenge of pub-
lishing a bona " de poem in the form of an epic haiku— 456 individual stanzas
written over the course of just a few days. Schoen, who was inspired by the
clever re- creations of DeCSS compiled in the gallery, wrote the poem to deliver
a stark and clear political message. The author asserts that source code is not a
metaphor or similar to expression but rather is expression, and he makes this
point by re- creating the original DeCSS program as a poem. This bit of poetry
is now well known among hackers as an exemplary hack for displaying the
cleverness that hackers collectively value. Schoen opens his poem by thank-
ing Touretzky and then moves immediately to abandon his “exclusive rights”
clause of the copyright statute, indexing the direct in2 uence of F/OSS licensing.

How to Decrypt a DVD: In Haiku Form
(Thanks, Prof. D. S. T.)

(I abandon my
exclusive rights to make or

perform copies of

this work, U. S. Code
Title Seventeen, section
One Hundred and Six.)

Muse! When we learned to
count, little did we know all

the things we could do

some day by shuf# ing
those numbers: Pythagoras

said “All is number”

long before he saw
computers and their effects,

or what they could do

by computation,
naive and mechanical

fast arithmetic.

It changed the world, it
changed our consciousness and lives

to have such fast math

C O D E I S S P E E C H 1 7 7

available to
us and anyone who cared

to learn programming.

Now help me, Muse, for
I wish to tell a piece of

controversial math,

for which the lawyers
of DVD CCA

don’t forbear to sue:

that they alone should
know or have the right to teach

these skills and these rules.

(Do they understand
the content, or is it just
the effects they see?)

And all mathematics
is full of stories (just read

Eric Temple Bell);

and CSS is
no exception to this rule.
Sing, Muse, decryption

once secret, as all
knowledge, once unknown: how to

decrypt DVDs.

Here, the author " rst frames the value of programming in terms of
mathematics along with its antagonists in the entertainment industry, in-
tellectual property statutes, lawyers, and judges— all of which use soft-
ware without recognizing, much less truly understanding, the embedded
creative labor and expressive value. This critique is made explicit through
a question: “Do they understand the content, or is it just the effects they
see?” The author then launches into a long mathematical description of
the forbidden CSS code represented in DeCSS. The expert explains the
“player key” of CSS, which is the proprietary piece that enacts the access
control measures:

So this number is
once again, the player key:

(trade secret haiku?)

Eighty- one; and then
one hundred three— two times; then

two hundred (less three)

1 7 8 C H A P T E R 5

Two hundred and twenty
four; and last (of course not least)

the humble zero

The writer states the access control mathematically, but using words. From
these lines alone a pro" cient enough programmer can deduce the encryp-
tion key. Thus the poem makes a similar point to the one made in the am-
icus brief— namely, that “at root, computer code is nothing more than text,
which, like any other text, is a form of speech. The Court may not know the
meaning of the Visual BASIC or Perl texts [. . .] but the Court can recognize
that the code is text.”19

The author then conveys that many F/OSS programmers conceive of their
craft as technically precise (and so functional) yet fundamentally expressive,
and as a result, worthy of free speech protection. In formally comparing
code to poetry in the medium of a poem, Schoen displays a playful form of
clever and recursive rhetoric valued among hackers; he also articulates both
the meaning of the First Amendment and software to a general public:

We write precisely
since such is our habit in

talking to machines;

we say exactly
how to do a thing or how

every detail works.

The poet has choice
of words and order, symbols,

imagery, and use

of metaphor. She
can allude, suggest, permit

ambiguities.

She need not say just
what she means, for readers can

always interpret.

Poets too, despite
their famous “license” sometimes

are constrained by rules:

How often have we
heard that some strange twist of plot

or phrase was simply

“Metri causa,” for
the meter’s sake, solely done

“to ! t the meter”?

C O D E I S S P E E C H 1 7 9

Although this haiku contains novel assertions (the tight coupling between source
code and speech), it is also through its inscription into a tangible and especially
culturally captivating medium (a hack with playful, recursive qualities) that the
assertion is transformed into a " rm social fact. Or to put it another way, here a
recondite legal argument makes its way into wide and public circulation as well
as consumption. This is how discourse meant for public circulation, as Warner
(2002, 91) has noted, “helps to make a world insofar as the object of address is
brought into being partly by postulating and characterizing it.”

FR E E DM I T RY!

The protests, poetry, and debate demonstrate how programmers and hackers
quickly became active participants in the drama of law and free software in the
digital age. This narrative process by which the law takes on a meaning to indi-
viduals through a period of contentious politics would accelerate thanks to the
simultaneous (although completely unrelated) DMCA infraction and arrest of
another programmer, Sklyarov. Because Sklyarov faced up to twenty- " ve years
in jail, programmers in fact only grew more infuriated with the state’s will-
ingness to police technological innovation and software distribution through
the DMCA. After Sklyarov’s arrest, protest against the DMCA and the hacker
commitment to a discourse of free speech only increased in emotional intensity,
and worked to extend and fortify the narrative process already under way.

This case would also prove far more dramatic than Johansen’s because
of the timing and place of the arrest. As mentioned earlier, Sklyarov was
arrested while leaving Defcon, one of the largest hacker conferences in the
world. During the conference, he had presented a paper on security breaches
and weaknesses within the Adobe e- book format. He purportedly violated
the DMCA by writing a piece of software for his Russian employer, Elcom-
soft, that unlocks Adobe’s e- book access controls and subsequently converts
the " les into PDF format. For the FBI to arrest a programmer at the end of
this conference was a potent statement. It showed that federal authorities
would act on corporate demands to prosecute hackers under the DMCA.

FBI agents attend Defcon, but there is a well- known, although tacit, agree-
ment that these agents, immediately identi" able by their L. L. Bean khaki
attire (normal Defcon regalia leans toward black clothing, T- shirts, and body
piercings), not interfere with the hackers. Despite their presence since the con
began in 1993, FBI agents had never arrested a hacker at Defcon. (Typically,
any arrests were local, and due to excessively rowdy and drunken behavior.)
The " rst- ever FBI arrest of a hacker signaled a one- sided renegotiation of the
relationship between legal authority and the hacker world.

On July 17, 2001, as Sklyarov was leaving the conference, federal agents
whisked him away to an undisclosed jail in Nevada. Weeks later, he was
released in the middle of a fervent Free Dmitry campaign. Sklyarov’s ar-
rest and related court hearings also prompted conversations built on those

1 8 0 C H A P T E R 5

Figure 5.1. So he’s a “hacker,” right?
Original pamphlet produced by Barrington King, http://www.

wyrdwright.com/sklyarov/ (accessed on September 10, 2010). Ex-
cerpt and photo taken from Free Version A, produced with ps2pdf

(pdf v 1.3 compatible) by Mike Castleman.

initiated by Johansen’s arrest and the resultant DeCSS lawsuits. But the Free
Dmitry campaign was organized more swiftly, was more visible, and directly
attacked Adobe, the company that had urged the US Department of Justice
to make the arrest. Its success, argues media scholar Hector Postigo (2010),
followed in part from how quickly activists organized the campaign, which
framed the issues in strong but accessible language, and actively sought to
distance the association between Dmitry and “hacker,” as an excerpt from
one of the organizing pamphlets makes clear, reinforced by the featured
family photo included in the 2 yer (see " gure 5.1).

Developers organized protests across US cities (such as Boston, New
York, Chicago, and San Francisco) and in Europe as well as Russia. San
Francisco, where I was doing my " eldwork at the time, was a hub of politi-
cal mobilization. Even though Sklyarov was in no fashion part of or identi-
" ed with the world of F/OSS development, local F/OSS developers were
behind a slew of protest activities, including a protest at Adobe’s San Jose
headquarters, a candlelight vigil at the San Jose public library, and a march
held after Linux World on August 29, 2001, that ended up at the federal
prosecutor’s of" ce.

At a fund- raiser that followed the march to the prosecutor’s of" ce, Stall-
man, the founder of the FSF, and Lessig, the superstar activist- lawyer, gave
impassioned speeches. Sklyarov, in a brief appearance, thanked the audience
for their support. The mood was electric in an otherwise- cool San Francisco
warehouse loft. Lessig, who had recently published his Code and Other
Laws of Cyberspace, a book that was changing the way F/OSS developers
understood the politics of technology, " red up the already- animated crowd
with charged declarations during his speech:

C O D E I S S P E E C H 1 8 1

Now this is America, right? It makes me sick to think this is where
we are. It makes me sick. Let them " ght their battles in Congress.
These million- dollar lobbyists, let them persuade Congressmen about
the sanctity of intellectual property and all that bullshit. Let them have
their battles, but why lock this guy up for twenty- " ve years?20

Most programmers agreed with Lessig’s assessment: the state had gone too
far in its uncritical support of the copyright industries. The protests had an
immediate effect. Adobe withdrew its support of the case, and eventually,
the court dropped all charges against Sklyarov on the condition that he
testify in the subsequent case against his employers, which he did. In De-
cember 2002, the jury in that case acquitted Elcomsoft, Sklyarov’s employer.
Johansen was acquitted just over a year later because the charges against
him were seen as too shaky for prosecution (the law he was arrested under
had nothing to do with DRM). Johansen still writes free software (including
programs that subvert DRM technologies) as well as a blog, So Sue Me, and
is admired among F/OSS hackers.

The DeCSS lawsuits were decided between 2001 and 2004, and even
though the courts were persuaded that the DeCSS was a form of speech,
they continued to uphold copyright law and deemed DeCSS un" t for First
Amendment protection. In one of the 2600 cases, Universal City Studios
Inc. v. Reimerdes, Judge Lewis A. Kaplan went so far as to declare that the
court’s decision meant to “contribute to a climate of appropriate respect for
intellectual property rights in an age in which the excitement of ready access
to untold quantities of information has blurred in some minds the fact that
taking what is not yours and not freely offered to you is stealing.”21

Many developers and hackers were deeply disappointed with these de-
cisions, which equated DeCSS with theft, and were shocked about how
narrow the consequences of Bernstein turned out to be. Many developers,
however, emboldened and galvanized by the collective outpouring they or-
ganized or witnessed, continued to assert, in passionate and often consider-
able legal detail, a different narrative to that of piracy and stealing. Schoen,
the DeCSS haiku author who questioned the cultural assumptions and ste-
reotypes at play with Judge Kaplan’s doctrinal reasoning, published one of
the most incisive accounts:

It’s hard to avoid the inherent sympathy Judge [Marilyn Hall] Pa-
tel bears toward Professor Bernstein (a speaker whose expression is
crushed by the awesome might of government bureaucracy) or the
equally apparent suspicion with which Judge Kaplan regards Emman-
uel Goldstein (a self- avowed hacker seemingly hell- bent on trouble).
These attitudes seem to me to be visible behind all the doctrinal ques-
tions; without committing myself for all time to a position in a conten-
tious area of legal theory, I would say that Judge Patel fought to show
why her case was a free speech case and that Judge Kaplan fought to

1 8 2 C H A P T E R 5

show why his was not. The question of which approach seems natural
would then be not primarily a question of legal doctrines, standards,
or precedents. It would instead be a conceptual, cultural battle: shall
programs be compared to epidemics of disease (evil, menacing, worthy
only of quarantine) or to books in libraries (the cornerstones of our
culture and our civilization)?22

Even if the court cases never declared source code as First Amendment
speech, the arrests, lawsuits, and protests cemented this connection. Hack-
ers, programmers, and computer scientists would continue to be motivated
to transform what is now their cultural reality— a rival liberal morality—
into a broader legal one by arguing that source code should be protectable
speech under the US Constitution and the constitutions of other nations.

CO N C L U S I O N

The law, in its formal and informal dimensions, clearly saturated this story,
acting as a double- edged sword that constrains and enables (and produces)
new possibilities. In an article on liberal law, Jane Collier, Bill Maurer, and
Liliana Suarez- Navaz note how liberal law, riddled with productive con-
tradictions, works to sanction an individuated identity. If “bourgeois law is
constructed as a system of rules that people are required to obey, whatever
their personal desires,” at the same time it also encourages “expressions
of individual contention or will, particularly in private contract that legal
agencies enforce” (Collier, Maurer, and Suarez- Navaz 1997, 4). While lib-
eral law certainly individuates its citizens (and private contract has been one
privileged route by which this is accomplished), free software is just one
example of what we might think of as a type of legal populism, especially
prevalent in the United States since the civil rights era, under which collec-
tives take the law into their own hands, and whereby the content of the law
matters as much as its formal attributes to recharge and change cultural
meaning. If the law, to use the formulation offered by Geertz (1983, 184), is
“part of a distinctive manner of imagining the real,” what I have shown in
this chapter is how the law becomes social reality, and in effect, constitutes
particular cultural meanings related to personhood, expression, creativity,
and thought.

This period of political protest and avowal, like much of hacker activ-
ity, is rooted initially in a defense of the existing hacker lifeworld, insofar
as intellectual property law in basic ways challenges the capacity of hack-
ers to do their work. Yet this defense does not merely leave the hacker
lifeworld untouched; it in fact transforms it in signi" cant ways, most es-
pecially by bringing hackers into more quotidian, though quite persistent,
contact with the language of law. Software developers have now deployed

C O D E I S S P E E C H 1 8 3

and also contested the law to recon" gure central tenets of the liberal
tradition— and speci" cally the meaning of free speech— to defend their
productive autonomy.

Many hackers, understood to be technologists, became legal thinkers and
tinkerers, undergoing legal training in the context of the F/OSS project while
building a corpus of liberal legal theory that links software to speech and
freedom. By means of lively protests and proli" c discussions, almost continu-
ously between 1999 and 2003, hackers as well as new publics debated the
connection between source code and speech. This link became a staple of
free software moral philosophy, and has helped add clarity in the competi-
tion between two different legal regimes (speech versus intellectual property)
for the protection of knowledge and digital artifacts. Now other actors, such
as activist lawyers, are consolidating new projects and bodies of legal work
that challenge the shape along with the direction of intellectual property law.

To be sure, the idea of free speech has never held a single meaning across
the societies that have valued, instantiated, or debated it. Yet it has come to
be seen as indispensable for a healthy democracy, a free press, individual
self- development, and academic integrity. It is, as one media theorist aptly
puts it, “as much cultural commonplace as an explicit doctrine” (Peters
2005, 18). F/OSS is an ideal vehicle for examining how and when techno-
logical objects, such as source code, are invested with new liberal meanings,
and with what consequences. By showing how developers incorporate legal
ideals like free speech into the practices of everyday technical production, I
trace the path by which older liberal ideals persist, albeit transformed, into
the present.

This is key to emphasize, for even if we can postulate a relation between
a product of creative work— source code— and a democratic ideal— free
speech, there is no necessary or fundamental connection between them
(Ratto 2005). Many academics and programmers have argued convincingly
that the act of programming should be thought of as literary— “a culture of
innovative and revisionary close reading” (Black 2002, 23; see also Chopra
and Dexter 2007). As with print culture of the last two hundred years (Johns
1998), this literary culture of programming has often been dictated and de-
lineated by a copyright regime whose logic is one of restriction. New free
speech sensibilities, which fundamentally challenge the coupling between
copyright and literary creation, must therefore be seen as a political act and
choice, requiring sustained labor and creativity to stabilize these connections.

Hackers have been in part successful in this political " ght because of their
facility with the law; because of years of intensive technical training, they
have not only easily adopted the law but also tinkered with it to suit their
needs. This active and transformative engagement with the law raises a set
of pressing questions about the current state of global politics and legal ad-
vocacy. As Jean Comaroff and John Comaroff (2003, 457) note, the modern
nation- state is one “rooted in a culture of legality”— a culture that in recent

1 8 4 C H A P T E R 5

years has become ever more pervasive, especially in the transnational arena.
Whether it is the constitutional recognition of multiculturalism across
Latin America and parts of Africa, or new avenues of commoditization like
the patenting of seeds, these new political and economic relationships are
“heavily inscribed in the language of the law” (ibid.). Given the extent to
which esoteric legal codes dominate so many " elds of endeavor, from phar-
maceutical production to " nancial regulation to environmental advocacy,
we must ask to what extent informal legal expertise, of the sort exhibited by
F/OSS developers, is a necessary or useful skill for social actors seeking to
contest such regimes, and where and how advocates acquire legal literacy.
Legal pedagogy keeps the issues of freedom present, sometimes through the
minuscule rede" nitions that occur through discussion, legal exegesis, and
the production of legal artifacts such as legal tests and guidelines. We must
remain alert to these amateur forms of legalism and the alternative social
forms that they imply.

	Pages from Coleman-Coding-Freedom-2
	Pages from Coleman-Coding-Freedom

